4 resultados para carbon policy
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Questions: Grasslands are usually neglected as potential carbon stocks, partially due to the lack of studies on biomass and carbon dynamics in tropical grasslands. What is the importance of Brazilian tropical wet grasslands as carbon sinks? Does fire frequency and season affect biomass and carbon allocation in Brazilian wet grasslands? Location: Wet grasslands, tropical savanna, Jalapão, Tocantins, northern Brazil. Methods: We determined biomass above- and below-ground, estimated carbon stocks in biennially burned plots (B2) and plots excluded from fire for 4 yr (B4). Moreover, we determined biomass in both rainy and dry seasons. Samples were 0.25 m × 0.25 m × 0.2 m (eight samples per treatment, applying a nested design, total of 48 samples). The biomass was classified in above-ground graminoids, forbs and dead matter, and below-ground roots and other below-ground organs. We used ANOVA to compare variables between treatments and seasons. Results: More than 40% of the total biomass and carbon stocks were located below-ground, mostly in roots. A high proportion of dead biomass (B4) was found in the above-ground material, probably due to low decomposition rates and consequent accumulation over the years. Although these grasslands do not experience water stress, we found significant evidence of resource re-allocation from below-ground organs to the above-ground biomass in the rainy season. Conclusions: We found more dead biomass in the rainy season, probably due to low decomposition rates, which can increase fire risk in these grasslands during the following dry season. These tropical wet grasslands stored high amounts of carbon (621 to 716 g C.m-2), mostly in the roots. Thus, policymakers should consider tropical grasslands as potential carbon stocks, since they are one of the most threatened and unprotected ecosystems in Brazil. © 2012 International Association for Vegetation Science.
Resumo:
A Scientific Committee on Problems of the Environment Rapid Assessment (SCOPE-RAP) workshop was held on 18-22 March 2013. This workshop was hosted by the European Commission, JRC Centre at Ispra, Italy, and brought together 40 leading experts from Africa, Asia, Europe and North and South America to create four synthesis chapters aimed at identifying knowledge gaps, research requirements, and policy innovations. Given the forthcoming publication by CABI of a book volume of the outcomes of the SCOPE-RAP in 2014, this workshop report provides an update on the global societal challenge of soil carbon management and some of the main issues and solutions that were identified in the four working sessions.
Resumo:
This chapter addresses the mismatch between existing knowledge, techniques and management methods for improved soil carbon management and deficits in its implementation. The paper gives a short overview of the evolution of the concept of soil carbon, which illustrates the interactions between scientific, industrial, technical, societal and economic change. It then goes on to show that sufficient techniques are available for the large-scale implementation of soil organic carbon (SOC) sequestration. A subsequent analysis of the bottlenecks that prevent implementation identifies where issues need to be addressed in order to enable robust, integrated and sustainable SOC management strategies.
Resumo:
Agriculture provides food, fibre and energy, which have been the foundation for the development of all societies. Soil carbon plays an important role in providing essential ecosystem services. Historically, these have been viewed in terms of plant nutrient availability only, with agricultural management being driven to obtain maximum benefits of this soil function. However, recently, agricultural systems have been envisioned to provide a more complete set of ecosystem services, in a win-win situation, in addition to the products normally associated with agriculture. The expansion and growth of agricultural production in Brazil and Argentina brought about a significant loss of soil carbon stocks, and consequently the associated ecosystem services, such as flooding and erosion control, water filtration and storage. There are several examples of soil carbon management for multiple benefits in Brazil and Argentina, with new soil management techniques attempting to reverse this trend by increasing soil carbon (C) stocks. One example is zero tillage, which has the advantage of reducing CO2 emissions from the soil and thus preserving or augmenting C stocks. Crop rotations that include cover crops have been shown to sequester significant amounts of C, both in Brazilian subtropical regions as well as in the Argentinean Pampas. Associated benefits of zero tillage and cover crop rotations include flood and erosion control and improved water filtration and storage. Another positive example is the adoption of no-burning harvest in the vast sugarcane area in Brazil, which also contributes to reduced CO2 emissions, leaving crop residues on the soil surface and thus helping the conservation of essential plant nutrients and improving water storage.