103 resultados para calorie restriction
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
OBJECTIVE: To assess the effect of food restriction (FR) on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR). METHODS: Isolated papillary muscle preparations of the left ventricle (LV) of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY) rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet) for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1) reduction in the body weight and LV weight of SHR and WKY rats; 2) increase in the time to peak shortening and the time to peak developed tension (DT) in the hypertrophied myocardium of the SHR; 3) diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Replicative life span in Saccharomyces cerevisiae is increased by glucose (G1c) limitation [ calorie restriction (CR)] and by augmented NAD(+). Increased survival promoted by CR was attributed previously to the NAD(+)-dependent histone deacetylase activity of sirtuin family protein Sir2p but not to changes in redox state. Here we show that strains defective in NAD(+) synthesis and salvage pathways (pnc1 Delta, npt1 Delta, and bna6 Delta) exhibit decreased oxygen consumption and increased mitochondrial H2O2 release, reversed over time by CR. These null mutant strains also present decreased chronological longevity in a manner rescued by CR. Furthermore, we observed that changes in mitochondrial H2O2 release alter cellular redox state, as attested by measurements of total, oxidized, and reduced glutathione. Surprisingly, our results indicate that matrix-soluble dihydrolipoyl-dehydrogenases are an important source of CR-preventable mitochondrial reactive oxygen species (ROS). Indeed, deletion of the LPD1 gene prevented oxidative stress in npt1 Delta and bna6 Delta mutants. Furthermore, pyruvate and alpha-ketoglutarate, substrates for dihydrolipoyl dehydrogenase-containing enzymes, promoted pronounced reactive oxygen release in permeabilized wild-type mitochondria. Altogether, these results substantiate the concept that mitochondrial ROS can be limited by caloric restriction and play an important role in S. cerevisiae senescence. Furthermore, these findings uncover dihydrolipoyl dehydrogenase as an important and novel source of ROS leading to life span limitation.
Resumo:
This study was designed to determine the genotoxicity of a supraphysiological dose of triiodothyronine (T3) in both obese and calorie-restricted obese animals. Fifty male Wistar rats were randomly assigned to one of the two following groups: control (C; n = 10) and obese (OB; n = 40). The C group received standard food, whereas the OB group was fed a hypercaloric diet for 20 weeks. After this period, half of the OB animals (n = 20) were subjected to a 25%-calorie restriction of standard diet for 8 weeks forming thus a new group (OR), whereas the remaining OB animals were kept on the initial hypercaloric diet. During the following two weeks, 10 OR animals continued on the calorie restriction diet, whereas the remaining 10 rats of this group formed a new group (ORS) given a supraphysiological dose of T3 (25 μg/100 g body weight) along with the calorie restriction diet. Similarly, the remaining OB animals were divided into two groups, one that continued on the hypercaloric diet (OB, n = 10), and one that received the supraphysiological dose of T3 (25 μg/100 g body weight) along with the hypercaloric diet (OS, n = 10) for two weeks. The OB group showed weight gain, increased adiposity, insulin resistance, increased leptin levels and genotoxicity; T3 administration in OS animals led to an increase in genotoxicity and oxidative stress when compared with the OB group. The OR group showed weight loss and normalized levels of adiposity, insulin resistance, serum leptin and genotoxicity, thus having features similar to those of the C group. On the other hand, the ORS group, compared to OR animals, showed higher genotoxicity. Our results indicate that regardless of diet, a supraphysiological dose of T3 causes genotoxicity and potentiates oxidative stress. © 2013 de Sibio et al.
Resumo:
O envelhecimento pode estar associado ao maior acúmulo de lesões celulares decorrentes das espécies reativas do oxigênio e do nitrogênio derivadas do metabolismo mitocondrial. Com a progressão da idade, há acúmulo de proteínas, lipídeos, carboidratos e DNA oxidados em relação a organismos jovens, de acordo com a teoria dos radicais livres. Entretanto, nem sempre os idosos ou animais envelhecidos apresentam maior estresse oxidativo que os jovens. Este artigo discute o paradoxo da teoria dos radicais livres de acordo com a teoria da biogênese da manutenção adequada do metabolismo mitocondrial. Diversos fatores podem contribuir para a redução do estresse oxidativo, como a hormese induzida pela prática regular de exercícios físicos, a restrição calórica, a ingestão de antioxidantes nutricionais e o aumento da produção de antioxidantes celulares que. em conjunto, estes promovem a expressão das sirtuínas e das proteínas do choque térmico, protegendo a integridade e funcionalidade mitocondriais, reduzindo o estresse oxidativo e nitrosativo, o que está associado à redução do envelhecimento e aumento da longevidade.
Resumo:
CONTEXTO: O retardo do crescimento intra-uterino (RCIU) continua sendo importante problema em perinatologia neste final de século. A natureza do agente etiológico, o período da gestação em que ocorreu o insulto e a sua duração influenciam o tipo de RCIU. OBJETIVO: Estudar a fisiopatologia do retardo de crescimento intrauterino (RCIU) em ratas, decorrente da restrição protéico-calórica materna, em relação à evolução do pâncreas fetal e placenta entre o 18o e 21o dias de prenhez. TIPO DE ESTUDO: Ensaio clínico randomizado em animal de laboratório. PARTICIPANTES: 41 ratas prenhes, normoglicêmicas, da raça Wistar. INTERVENÇÃO: Constituíram-se seis grupos experimentais: controle, com dieta ad libitum e cesárea, respectivamente, no 18º e 21º dias; grupos dieta restritiva a 25% introduzida no 1o dia da prenhez e cesárea no 18o e 21o dias; grupos com a mesma restrição, porém iniciada no 3o dia, com cesárea no 18o e 21o dias. VARIÁVEIS ESTUDADAS: Os recém-nascidos foram classificados, em relação à média mais ou menos um desvio padrão do grupo controle, em peso pequeno (PIP), adequado (AIP) e grande (GIP) para a idade de prenhez; as placentas foram pesadas e processadas para estudo histopatológico, incluindo morfologia e histoquímica, e os pâncreas fetais, para estudo morfológico. RESULTADOS: A desnutrição protéico-calórica materna causou RCIU após o 18o dia da prenhez. Antes desse período não ocorreu RCIU, porque a desnutrição materna diminuiu o número da prole e a placenta tornou-se vicariante. A restrição alimentar não interferiu com a morfologia do pâncreas fetal, e o estudo imunohistoquímico da placenta mostrou que, quando a restrição é introduzida no 1o dia de prenhez, os estoques de glicogênio também não sofrem alterações, diminuindo entre o 18o e 21o dias, como na prenhez normal. A restrição no 3o dia cursou com baixas concentrações de glicogênio placentário no 18o dia e desaparecimento no 21o dia. CONCLUSÃO: A fisiopatologia do RCIU, decorrente da restrição protéico-calórica materna em ratas, está relacionada com menor peso placentário e baixos estoques de glicogênio placentário.
Resumo:
Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Food restriction reduces body weight and influence bone mass and also is correlated with bone mineral density (BMD). Mechanisms have been proposed for the loss of BMD after body weight reduction, including reduced energy intake. Growing 8 wk-old Wistar male rats were randomly divided into Control and Calorie restriction associated with sucrose 30% (CRS). These animals were subjected to intermittent food restriction during 8 weeks and had free access to tap water and sucrose30% in distilled water. The rats were euthanized at the end of week 8, blood collected from abdominal aorta artery, femurs cleaned of adherent soft tissues, scanned using dual energy X-ray absorptiometry, structural and material properties determined by three-point bending testing in the mid-diaphyseal region, bone surface tested in a microhardness tester and microstructure was assessed in a microcomputer tomography. In CRS animals body weight decreased significantly relative to the Control animals. There was a clear option for high-sucrose beverage in CRS animals. No difference was observed in biochemical, densitometric and biomechanical analyzes. Results from micro CT showed only significant difference in connectivity of trabecular bone. It has been suggested that rats submitted to food restriction consumed sugar not because of its inherent palatability, but in order to alter their macronutrient balance and animals need to meet energy demands in high-sucrose.
Resumo:
Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean ± SD): 58.9 ± 8.2; FR: 50.8 ± 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 ± 379; FR: 3555 ± 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 ± 16; FR: 149 ± 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 ± 9; FR: 150 ± 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 ± 1.6; FR: 9.2 ± 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 ± 16.5; FR: 68.2 ± 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The development of a fever in response to intravenous (IV, 1.5 μg/kg body mass) and intracerebroventricular (ICV, 1.5 μg/animal) injections of Escherichia coli lipopolysaccharide (LPS) was studied in control, thyroidectomised and protein-calorie malnourished rabbits (New Zealand Whites, n = 55). ICV injection of LPS is control rabbits produced a fever response, the characteristics of which differed from those obtained after IV pyrogen injection. Thyroid deficiency caused an attenuated fever response, irrespective of whether LPS had been administered by IV or ICV injection. Protein-calorie malnourished rabbits showed a smaller fever response after IV or ICV pyrogen injections. Malnourished rabbits, refed over a period of 15 days, showed a typical biphasic fever response, but with lower magnitude than controls. The results of these experiments suggest that ICV injection of LPS is not an appropriate model for the study of fever mechanisms in disease states, and that the attenuated fever response observed in protein-calorie malnourished rabbits may be related, at least in part, to a decreased ability to produce the endogenous pyrogen interleukin-1.
Resumo:
The aim of this study was to test the hypothesis that protein-calorie undernutrition decreases myocardial contractility jeopardizing ventricular function, and that ventricular dysfunction can be detected noninvasively. Five-month-old male Wistar-Kyoto rats were fed with regular rat chow ad libitum for 90 days (Control group, n = 14). A second group of rats received 50% of the amount of diet consumed by de control group (Food restricted group, n = 14). Global LV systolic function was evaluated in vivo, noninvasively, by transthoracic echocardiogram. After echocardiographic study, myocardial contractility was assessed in vitro in the isovolumetrically beating isolated heart in eight animals from each group (Langendorff preparation). The in vivo LV fractional shortening showed that food restriction depressed LV systolic function (p < 0.05). Myocardial contractility was impaired as assessed by the maximal rate of rise of LV pressure (+dP/dt), and developed pressure at diastolic pressure of 25 mmHg (p < 0.05). Furthermore, food restriction induced eccentric ventricular remodeling, and reduced myocardial elasticity and LV compliance (p < 0.05). In conclusion, food restriction causes systolic dysfunction probably due to myocardial contractility impairment and reduction of myocardial elasticity. © 2002 Elsevier B.V. All rights reserved.