37 resultados para bulk
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The objective of this project was to study the influence of surcharge pressure and moisture content on the compressive behavior and bulk density of soybeans. Three varieties were selected with varying dimensions and shapes. Moisture contents of 10.5, 15.0, and 20% were tested at nine surcharge pressures in the range from 0 to 82.8 kPa. Results indicated that the bulk densities of different soybean varieties have similar behavior with respect to pressure level and moisture content but that the magnitude of bulk density was influenced by variety, Bulk density was influenced by both pressure level and moisture content. The four-element Burger model was found to adequately describe the bulk density of soybeans as a function of pressure for all varieties and moisture levels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A sensitive, precise, and specific high-performance liquid chromatographic (HPLC) method was developed for the assay of gatifloxacin (GATX) in raw material and tablets. The method validation parameters yielded good results and included the range, linearity, precision, accuracy, specificity, and recovery. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The HPLC separation was carried out by reversed-phase chromatography on a C18 absorbosphere column (250 x 4.6 mm id, 5 pm particle size) with a mobile phase composed of acetic acid 50/o--acetonitrile-methanol (70 + 15 + 15, v/v/v) pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 287 nm. The calibration graph for GATX was linear from 4.0 to 14.0 mu g/mL. The interday and intraday precisions (relative standard deviation) were less than 1.05%.
Resumo:
The absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110) and (101) surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110) and (101) surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101) surface, which presents direct bandgap transition.
Resumo:
A theoretical investigation has been carried out to characterize bulk and selected surfaces of anatase TiO2. The calculations are performed using a B3LYP hybrid functional and 6-31G basis set within the periodic density functional approximation. Optimization procedures have been employed to determine the equilibrium geometry of the crystal and slab surface models. The compressibility, band structure, and the bulk and surface charge distributions are reported. The surface relative energies are identified to follow the sequence: (001) < (101) < (100) much less than (110) < < < (111), from the most stable surface to the least stable one. Relaxation of (001) and (101) surfaces are moderate, with no displacements exceeding; approximate to0.19 Angstrom. The theoretical results are compared with previous theoretical studies and available experimental data. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The structural and electronic properties of bulk and both oxidized and reduced SnO2(110) surfaces as well as the adsorption process of O-2 on the reduced surface have been investigated by periodic DFT calculations at B3LYP level. The lattice parameters, charge distribution, density of states and band structure are reported for the bulk and surfaces. Surface relaxation effects have been explicitly taken into account by optimizing slab models of nine and seven atomic layers representing the oxidized and reduced surfaces, respectively. The conductivity behavior of the reduced SnO2(110) surface is explained by a distribution of the electrons in the electronic states in the band gap induced by oxygen vacancies. Three types of adsorption approaches of O-2 on the four-fold tin at the reduced SuO(2)(110) surface have been considered. The most exothermic channel corresponds to the adsorption of O-2 parallel to the surface and to the four-fold tin row, and it is believed to be associated with the formation of a peroxo O-2(2-) species. The chemisorption of O-2 on reduced SnO2(110) surface causes a significant depopulation of states along the band gap and it is shown to trap the electrons in the chemisorbed complex producing an electron-depleted space-charge layer in the inner surface region of the material in agreement with some experimental evidences. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Este trabalho teve por objetivo estudar os efeitos de diferentes sistemas de uso e manejo na densidade do solo nas suas propriedades químicas e na atividade microbiana em um Latossolo Vermelho distrófico (Oxisol). As amostras de solo foram retiradas de parcelas dos seguintes tratamentos: cerrado denso preservado, pastagem de Brachiaria decumbens degradada (20 anos), plantio direto com rotação de culturas (8 anos) e sistema convencional com rotação de culturas anuais (10 anos). O delineamento experimental utilizado foi o inteiramente casualizado, com dez repetições. O uso contínuo de plantio direto resultou em mais alta taxa de C-biomassa microbiana e menor perda relativa de carbono pela respiração basal, podendo determinar, desta forma, maior acúmulo de C no solo a longo prazo. Proporcionou, ainda, melhoria na densidade aparente e nas propriedades químicas do solo. Assim, o sistema plantio direto, com manejo de culturas, mostrou ser uma alternativa para a conservação e manutenção das condições físicas e do potencial produtivo de solos de cerrado.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mastitis is the most common infectious disease affecting dairy cattle; in addition, it remains the most economically important disease of dairy industries around the world. Streptococcus agalactiae, a contagious pathogen associated with subclinical mastitis, is highly infectious. This bacterium can cause an increase in bulk tank bacterial counts (BTBC) and bulk tank somatic cell counts (BTSCC). The microbiological identification of S. agalactiae in samples from bulk tanks is an auxiliary method to control contagious mastitis. Thus, there are some limitations for time-consuming cultures or identification methods and additional concerns about the conservation and transport of samples. Bulk tank samples from 247 dairy farms were cultured and compared through polymerase chain reaction (PCR), directed to 16S rRNA genes of S. agalactiae, followed by BTBC and S. agalactiae isolation. The mean value of BTBC was 1.08 x 10(6) CFU mL(-1) and the bacterium was identified through the microbiological method in 98 (39.7%; CI95% = 33.8-45.9%) and through PCR in 110 (44.5%; CI95% = 38.5-50.8%) samples. Results indicated sensitivity of 0.8571 +/- 0.0353 (CI95% = 0.7719-0.9196) and specificity of 0.8255 +/- 0.0311 (CI95% = 0.7549-0.8827). The lack of significant difference between microbiological and molecular results (kappa = 0.6686 +/- 0.0477 and CI95% = 0.5752-0.7620) indicated substantial agreement between the methods. This suggests that PCR can be used for bulk tank samples to detect contagious mastitis caused by S. agalactiae. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The effect of changes in the bulk dielectric constant on the DNA torsional properties was evaluated from plasmid circularization reactions. In these reactions, pUC18 previously linearized by EcoRI digestion was recircularized with T4 DNA ligase. The bulk dielectric constant of the reaction medium was decreased by the addition of different concentrations of neutral solutes: ethylene glycol, glycerol, sorbitol, and sucrose, or increased by the addition of glycine. The topoisomers generated by the ligase reaction were resolved by agarose-gel electrophoresis. The DNA twist energy parameter (K), which is an apparent torsional constant, was determined by linearization of the Gaussian topoisomers' distribution. It was observed that the twist energy parameter for the given solutes is almost linearly dependent on the bulk dielectric constant. In the reaction buffer, the twist energy parameter was determined to be 1100 +/- 100. By decreasing the dielectric constant to 74 with the addition of sorbitol, the value of the parameter reaches K = 900 +/- 100, whereas the addition of ethylene glycol leads to kappa = 400 +/- 50. Upon addition of glycine, which resulted in a dielectric constant equal to 91, the value of the twist energy parameter increased to K 1750 +/- 100. (c) 2007 Wiley Periodicals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The relationship between grain-boundary capacitance and extrinsic shallow donors caused by Nb addition to SnO2 center dot COO binary polycrystalline system has been investigated by means of combined techniques such as I-V characteristic response, complex impedance and capacitance analysis and electrostatic force microscopy. The estimated role of the Nb doping is to increase the concentration of shallow donors that are capable of enhancing the electronic donation to grain-boundary acceptors. This effect leads to the formation of potential barriers at grain boundaries with a simultaneous increase of grain-boundary capacitance and non-Ohmic features of the polycrystalline device doped with Nb atoms.
Resumo:
Alterações na densidade do substrato durante o cultivo das plantas modificam suas propriedades físicas. O trabalho teve como objetivos caracterizar fisicamente dois substratos hortícolas e avaliar o efeito da densidade na relação ar/água dos mesmos, elaborando funções matemáticas que permitam estimar tal relação a partir da densidade do substrato. Para tanto, determinou-se a distribuição do tamanho das partículas, a densidade e a curva de retenção de água. Procedeu-se o acondicionamento dos substratos em três valores de densidade: 10 (D1), 20 (D2) e 30% (D3) maior que a densidade (D) determinada na fase de caracterização. Partindo das amostras com diferentes densidades, determinou-se a curva de retenção de água dos substratos. A influência do aumento da densidade do substrato na porosidade total (PT), no espaço de aeração (EA), na água disponível (AD), na água facilmente disponível (AFD), na água tamponante (AT) e na água remanescente (AR) foi avaliada pela análise de regressão linear simples e análise polinomial. A composição granulométrica e a curva de retenção de água foram significativamente diferentes para os dois substratos. O aumento da densidade diminuiu a PT e o EA e aumentou a AT e AR. Os maiores valores de AD e AFD foram observados para D1. Foram obtidas equações de regressão que podem auxiliar na escolha da relação ar/água mais adequada para cada condição.