3 resultados para building sites
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The present study is in reference to precast concrete (panels) walls as the main structural system. The diversification of the structural systems is a reality due to specific characteristics', as a result there is a lack of study and analysis. Some systems are already established in their applications, for instance: conventional reinforced concrete, structural masonry, metal structures, and wood structure. Apart from this precast concrete elements has had a growth in building sites in Brazil, therefore professionals should be more aware. Affordable house funding initiatives to address the housing shortage has been recurrent throughout the country, additionally precast concrete walls has been an alternative that meets the three basic concepts of engineering, which are: the technique, economy, and security. The objective of this study is to gather concepts from the literature and TOMO (2012) about precast concrete walls and make a didactic synthesis of how they are viewed. The modeling structure method of the system was performed following the concept of assigning bars, using the computer program of calculations SAP2000. Initially will be presented a theoretical part, furthermore a case study to illustrate the sizing of the walls using EXCEL tables programmed with calculation routine. The results will be presented in calculated efforts by the program for further analysis. Finally, will be highlighted important items of modeling and interpretation of the results
Resumo:
Photoluminescence and photo-excited conductivity data as well as structural analysis are presented for sol-gel SnO2 thin films doped with rare earth ions Eu3+ and Er3+, deposited by sol-gel-dip-coating technique. Photoluminescence spectra are obtained under excitation with various types of monochromatic light sources, such as Kr+, Ar+ and Nd:YAG lasers, besides a Xe lamp plus a selective monochromator with UV grating. The luminescence fine structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at the asymmetric grain boundary layer sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference in the capture energy is not so evident in these materials with nanoscocopic crystallites, even though the luminescence spectra are rather distinct. It seems that grain boundary scattering plays a major role in Eu-doped SnO2 films. Structural evaluation helps to interpret the electro-optical data. © 2010 IOP Publishing Ltd.
Resumo:
Pós-graduação em Comunicação - FAAC