401 resultados para bone tissue
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The objective was to evaluate the effect of soy fermented product intake on the corporal weight and bone tissue of ovariectomized mature rats. This product was fermented with Enterococcusfaecium and Lactobacillus jugurti and enriched with isoflavones and calcium. The animals were divided in 5 groups: sham-ovariectomized; ovariectomized; ovariectomized treated with soy fermented product enriched with isoflavones and calcium; ovariectomized treated with soy fermented product enriched with calcium and ovariectomized treated with nonfermented product enriched only with calcium. In order to evaluate the effect of the tested product on bone tissue (femur and tibia), the following parameters were analyzed: length; mechanical assay of three points; density (Archimedes principle); mineral content; calcium content; measure of the trabecular widths. The corporal weight of group treated with soy fermented product containing isoflavones and calcium showed no statistical difference from sham-ovariectomized group and trabecular widths tended to have larger than ovariectomized group. However, there was no significant difference to the other evaluated parameters in result of the diverse treatments. Thus, soy fermented product enriched with isoflavones and calcium inhibited the increasing of corporal weight caused by ovariectomy and revealed a tendency to trabecular protection after castration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In vivo determination of the incorporated activity of Tc-99(m)-MDP (methylene diphosphonate) in bone tissue by means of a scintillation camera requires calibration of the device. This can be carried out by using an anthropomorphic physical phantom. In this work, a new human tibia and fibula phantom is presented to estimate incorporated activity to bone tissue. A tibia and a fibula, taken from a real skeleton, were used to develop the phantom. Images were acquired of the legs of 65 volunteers at different times of incorporation (minimum of 120 and maximum of 2500 min after injection) and count rates of such a region were obtained by means of a computer program. The calibration factor obtained was then used to assess the activity in the two bents. The final result is 0.4995 kBq per cpm for technetium. The proposed method can be used both for radiation protection purposes and for metabolism studies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: the aim of this study was to assess, through Raman spectroscopy, the incorporation of calcium hydroxyapatite (CHA; similar to 960 cm(-1)), and scanning electron microscopy (SEM), the bone quality on the healing bone around dental implants after laser photobiomodulation ( lambda 830 nm). Background Data: Laser photobiomodulation has been successfully used to improve bone quality around dental implants, allowing early wearing of prostheses. Methods: Fourteen rabbits received a titanium implant on the tibia; eight of them were irradiated with lambda 830 nm laser ( seven sessions at 48-h intervals, 21.5 J/cm(2) per point, 10 mW, phi similar to 0.0028 cm(2), 86 J per session), and six acted as control. The animals were sacrificed 15, 30, and 45 days after surgery. Specimens were routinely prepared for Raman spectroscopy and SEM. Eight readings were taken on the bone around the implant. Results: the results showed significant differences on the concentration of CHA on irradiated and control specimens at both 30 and 45 days after surgery ( p < 0.001). Conclusion: It is concluded that infrared laser photobiomodulation does improve bone healing, and this may be safely assessed by Raman spectroscopy or SEM.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Modified fluorcanasite glasses were fabricated by either altering the molar ratios of Na 2O and CaO or by adding P 2O 5 to the parent stoichiometric glass compositions. Glasses were converted to glass-ceramics by a controlled two-stage heat treatment process. Rods (2 mm x 4 mm) were produced using the conventional lost-wax casting technique. Osteoconductive 45S5 bioglass was used as a reference material. Biocompatibility and osteoconductivity were investigated by implantation into healing defects (2 mm) in the midshaft of rabbit femora. Tissue response was investigated using conventional histology and scanning electron microscopy. Histological and histomorphometric evaluation of specimens after 12 weeks implantation showed significantly more bone contact with the surface of 45S5 bioglass implants when compared with other test materials. When the bone contact for each material was compared between experimental time points, the Glass-Ceramic 2 (CaO rich) group showed significant difference (p = 0.027) at 4 weeks, but no direct contact at 12 weeks. Histology and backscattered electron photomicrographs showed that modified fluorcanasite glass-ceramic implants had greater osteoconductivity than the parent stoichiometric composition. Of the new materials, fluorcanasite glass-ceramic implants modified by the addition of P 2O 5 showed the greatest stimulation of new mineralized bone tissue formation adjacent to the implants after 4 and 12 weeks implantation. © 2010 Wiley Periodicals, Inc.
Resumo:
The administration of cyclosporine A (CsA) has been associated with significant bone loss and increased bone remodeling. The present investigation was designed to evaluate the effects of CsA on alveolar bone of rats subjected to experimental periodontitis, using histomorphometric and histological analysis. Twenty-four rats were divided into groups with 6 animals each: 1, control; 2, rats with ligature around the lower first molars; 3, rats with ligature around the lower first molars and that were treated with 10 mg CsA/kg of body weight/d; and 4, rats treated with 10 mg CsA/kg of body weight/d. At the end of 30 days, rats were humanely killed and subjected to a histological processing, with analysis of the distance cemento-enamel junction and alveolar bone crest, bone area, eroded bone area, and cemento surface. All of them were assessed at the mesial region of the alveolar bone. The CsA therapy combined with ligature placement decreased bone area and increased the eroded bone area around the tooth surface. The results at the histological analysis showed the same combination and changes. Therefore, in spite of the lack of a direct effect on the alveolar bone height, the CsA therapy intensified the imbalance of the alveolar bone homeostasia in a rat model of experimental periodontitis. © 2013 Elsevier Inc.
Resumo:
The aimof this study was to evaluate the stress distribution on bone tissue with a single prosthesis supported by implants of large and conventional diameter and presenting different veneering materials using the 3-D finite elementmethod. Sixteenmodels were fabricated to reproduce a bone block with implants, using two diameters (3.75 × 10 mmand 5.00 × 10 mm), four different veneering materials (composite resin, acrylic resin, porcelain, and NiCr crown), and two loads (axial (200 N) and oblique (100 N)). For data analysis, the maximum principal stress and vonMises criterion were used. For the axial load, the cortical bone in allmodels did not exhibit significant differences, and the trabecular bone presented higher tensile stresswith reduced implant diameter. For the oblique load, the cortical bone presented a significant increase in tensile stress on the same side as the loading for smaller implant diameters. The trabecular bone showed a similar but more discreet trend. There was no difference in bone tissue with different veneering materials. The veneering material did not influence the stress distribution in the supporting tissues of single implant-supported prostheses. The large-diameter implants improved the transference of occlusal loads to bone tissue and decreased stress mainly under oblique loads.Oblique loading was more detrimental to distribution stresses than axial loading. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The primary stability of dental implants is fundamental for osseointegration. Therefore, this study aimed to assess the correlation between insertion torque (IT) and resonance frequency analysis (RFA) of implants placed in mandibles and maxillas of different bone densities. Eighty dental implants were placed in maxillas and mandibles, and IT and the implant stability quotient (ISQ) were measured at the time of implant insertion. Bone density was assessed subjectively by the Lekholm and Zarb index. The type I and II densities were grouped together (group A)as were the type III and IV densities (group B). The IT in group A was higher (Student t test, P = .0013) than in group B (46.27 +/- 18.51 Ncm, 33.62 +/- 14.74 Ncm, respectively). The implants placed in group A showed higher ISQ (Student t test, P = .0004) than those placed in group B (70.09 +/- 7.50, 63.66 +/- 8.00, respectively). A significant correlation between IT and the ISQ value was observed for group A (Pearson correlation test; r = 0.35; P = .0213) and for group B (r = 0.37; P = .0224). Within the limitations of this study, it was possible to conclude that there is a correlation between IT and RFA of implants placed in mandibles and maxillas of different bone densities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effects of homogenous demineralized dentin matrix (HDDM) slices and platelet-rich plasma (PRP) in surgical defects created in the parietal bones of alloxan-induced diabetic rabbits, treated with a guided bone regeneration technique. Biochemical, radiographic, and histological analyses were performed. Sixty adult New Zealand rabbits were divided into five groups of 12: normoglycaemic (control, C), diabetic (D), diabetic with a PTFE membrane (DM), diabetic with a PTFE membrane and HDDM slices (DM-HDDM), and diabetic with PTFE membrane and PRP (DM-PRP). The quantity and quality of bone mass was greatest in the DM-HDDM group (respective radiographic and histological analyses: at 15 days, 71.70±16.50 and 50.80±1.52; 30 days, 62.73±16.51 and 54.20±1.23; 60 days, 63.03±11.04 and 59.91±3.32; 90 days, 103.60±24.86 and 78.99±1.34), followed by the DM-PRP group (respective radiographic and histological analyses: at 15 days 23.00±2.74 and 20.66±7.45; 30 days 31.92±6.06 and 25.31±5.59; 60 days 25.29±16.30 and 46.73±2.07; 90 days 38.10±14.04 and 53.38±9.20). PRP greatly enhanced vascularization during the bone repair process. Abnormal calcium metabolism was statistically significant in the DM-PRP group (P<0.001) for all four time intervals studied, especially when compared to the DM-HDDM group. Alkaline phosphatase activity was significantly higher in the DM-HDDM group (P<0.001) in comparison to the C, D, and DM-PRP groups, confirming the findings of intense osteoblastic activity and increased bone mineralization. Thus, HDDM promoted superior bone architectural microstructure in bone defects in diabetic rabbits due to its effective osteoinductive and osteoconductive activity, whereas PRP stimulated angiogenesis and red bone marrow formation.