88 resultados para bone matrix
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial.
Resumo:
The influence of daily energy doses of 0.03, 0.3 and 0.9 J of He-Ne laser irradiation on the repair of surgically produced tibia damage was investigated in Wistar rats. Laser treatment was initiated 24 h after the trauma and continued daily for 7 or 14 days in two groups of nine rats (n=3 per laser dose and period). Two control groups (n=9 each) with injured tibiae were used. The course of healing was monitored using morphometrical analysis of the trabecular area. The organization of collagen fibers in the bone matrix and the histology of the tissue were evaluated using Picrosirius-polarization method and Masson's trichrome. After 7 days, there was a significant increase in the area of neoformed trabeculae in tibiae irradiated with 0.3 and 0.9 J compared to the controls. At a daily dose of 0.9 J (15 min of irradiation per day) the 7-day group showed a significant increase in trabecular bone growth compared to the 14-day group. However, the laser irradiation at the daily dose of 0.3 J produced no significant decrease in the trabecular area of the 14-day group compared to the 7-day group, but there was significant increase in the trabecular area of the 15-day controls compared to the 8-day controls. Irradiation increased the number of hypertrophic osteoclasts compared to non-irradiated injured tibiae (controls) on days 8 and 15. The Picrosirius-polarization method revealed bands of parallel collagen fibers (parallel-fibered bone) at the repair site of 14-day-irradiated tibiae, regardless of the dose. This organization improved when compared to 7-day-irradiated tibiae and control tibiae. These results show that low-level laser therapy stimulated the growth of the trabecular area and the concomitant invasion of osteoclasts during the first week, and hastened the organization of matrix collagen (parallel alignment of the fibers) in a second phase not seen in control, non-irradiated tibiae at the same period. The active osteoclasts that invaded the regenerating site were probably responsible for the decrease in trabecular area by the fourteenth day of irradiation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. 1. Solubilized and membrane-bound alkaline phosphatase showed Michaelis-Menten behavior in a wide range of different substrate concentrations. 2. 2. Membrane-bound alkaline phosphatase has a molecular weight of 130,000 and its minimum active configuration comprises two identical subunits of about 65,000. 3. 3. The two forms of the enzyme behave similarly with respect to NaCl, urea and guanidine HCl. 4. 4. Catalytic groups have pK values of about 8.5 and 9.7 for both membrane-bound and solubilized enzyme. © 1987.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to evaluate the repair process in the reconstruction of the anterior wall of the frontal sinus of monkeys with bovine bone matrix. Four adult Cebus apella monkeys underwent an ostectomy of the anterior wall of the frontal sinus. The frontal sinus mucosa and the nasofrontal duct were not manipulated. Reconstruction occurred with implants of bovine bone matrix laminae measuring 2.0 x 2.5 cm and 0.4 mm thick, stabilized under pressure in the lateral wall of the frontal sinus. The monkeys were sacrificed over a period of 150 days and routine laboratory procedures were followed for hematoxylin-eosin staining and histologic evaluation of the specimens. Neoformed bone tissue was observed in contact with the frontal sinus mucosa and the bovine bone matrix. The frontal sinus mucosa remained whole without fibrous tissue or cystic formations. There was no occurrence of cellularization as well as revascularization of the bovine bone matrix, though it has permitted bone conduction on this surface. It was possible to conclude that the demineralized bovine bone matrix was biotolerable, being incorporated into the bone without the presence of inflammatory cells with characteristics of inertness and antigenicity and behaved as an osteoconductive material.
Resumo:
Endochondral calcification involves the participation of matrix vesicles (MVs), but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP) during mineralization involves hydrolysis of inorganic pyrophosphate (PPi), it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP), ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km) remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.
Resumo:
Purpose: The aim of this study was to evaluate the bone repair process in the maxillary sinus in monkeys treated with high-density porous polyethylene (Medpor)Methods: Four capuchin monkeys (Cebus apella) were submitted to bilateral horizontal osteotomies in the anterior wall of the maxillary sinus and divided into 2 groups: control group, left side with no implants, and porous polyethylene group, right side with Medpor. After a period of 145 days after implant placement, the maxillae were removed for histologic and histometric analyses.Results: Bone repair in osteotomized areas took place by connective tissue in 58.5% and 58.7% in the control group and the porous polyethylene group, respectively. In the contact surface with Medpor, bone repair occurred in 41.3%.Conclusions: Medpor was not reabsorbed within the period of this study and allowed bone repair surrounding it. The porous polyethylene constitutes a feasible alternative for bone defect reconstruction.
Resumo:
Background and Objectives: Bone remodeling is characterized as a cyclic and lengthy process. It is currently accepted that not only this dynamics is triggered by a biological process, but also biochemical, electrical, and mechanical stimuli are key factors for the maintenance of bone tissue. The hypothesis that low-level laser therapy (LLLT) may favor bone repair has been suggested. The purpose of this study was to evaluate the bone repair in defects created in rat lower jaws after stimulation with infrared LLLT directly on the injured tissue.Study Design/Materials and Methods: Bone defects were prepared on the mandibles of 30 Holtzman rats allocated in two groups (n = 15), which were divided in three evaluation period (15, 45, and 60 days), with five animals each. control group-no treatment of the defect; laser group-single laser irradiation with a GaAlAs semiconductor diode laser device (lambda = 780 nm; P = 35 mW t = 40 s; circle minus = 1.0 mm; D = 178 J/cm(2); E = 1.4 J) directly on the defect area. The rats were sacrificed at the preestablished periods and the mandibles were removed and processed for staining with hematoxylin and eosin, Masson's Trichrome and picrosirius techniques.Results: the histological results showed bone formation in both groups. However, the laser group exhibited an advanced tissue response compared to the control group, abbreviating the initial inflammatory reaction and promoting rapid new bone matrix formation at 15 and 45 days (P < 0. 05). on the other hand, there were no significant differences between the groups at 60 days.Conclusion: the use of infrared LLLT directly to the injured tissue showed a biostimulating effect on bone remodeling by stimulating the modulation of the initial inflammatory response and anticipating the resolution to normal conditions at the earlier periods. However, there were no differences between the groups at 60 days.
Resumo:
Purpose: This study was proposed to analyze histologically the process of repairing bone defects created surgically in the cranial vaults of rabbits. Materials and Methods: Thirty adult male rabbits (Oryctolagus cunilicus) received, under general anesthesia, bilateral parietal osteotomies by means of a 6mm-diameter trephine. The bony defects were divided into 4 groups. In group 1 the defect did not receive any treatment; in group 2 the defect was filled with lyophilized bovine bone (Biograft); in group 3 it was filled with bovine bone and covered with a bone matrix membrane (Bioplate); in group 4 it was covered with a bone matrix membrane. Animals were sacrificed in 3 equal groups at 15, 30, and 60 days. The specimens were subjected to routine laboratory procedures to evaluate the degree of bone repair. Results: After 60 days, new bone formation in group 2 was not satisfactory when compared to that of group 3. Large amounts of new bone formation in maturation were seen in group 3. In the defects covered with a membrane the results were similar to those of group 1 (ie, the cavity was filled with fibrous connective tissue). The implanted bone and membranes were totally resorbed. Discussion and Conclusions: the use of a membrane served as a barrier against the migration of cells from the adjacent tissue and the bone graft/membrane preserved the cavity space, resulting in an enhanced osteogenic effect.