7 resultados para bone deformation

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A vitamina C é essencial para dietas de peixe porque muitas espécies não conseguem sintetizá-la. Esta vitamina é necessária par a formação de cartilagem e matriz óssea. Além disso, age como antioxidante e melhora as resposta do sistema imunológico. O presente trabalho investigou os efeitos da suplementação de vitamina C em dietas para alevinos de pintado (Pseudoplatystoma corruscans) pela incidência de deformidades na estrutura óssea e cartilaginosa. O ascorbil polifosfato (AP) foi utilizado como fonte de vitamina C em dietas para alevinos de pintado durante o período de três meses. Seis dietas foram formuladas: uma dieta controle (0 mg de vitamina C / kg) e cinco dietas 500, 1.000, 1.500, 2.000 e 2.500 mg de AP / kg. Os peixes alimentados sem suplementação de vitamina C apresentaram deformidades óssea na cabeça e mandíbula e fragilidade de nadadeiras. Assim, a dieta de 500 mg de AP/kg foi suficiente para prevenir a ocorrência de deformidades, e a ausência desta vitamina prejudica o desenvolvimento ósseo de juvenis de pintados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays the regular practice of sports is known as a way to obtain a better quality of life. On the other hand, the media has been distorting this idea, determining the ideal body as the hypertrophy phenotype. It is well known that the genetic factor does not allow all individuals to have this body shape. Besides the fact that, the anxiety of these people in obtain quick results, as one of the globalization’s consequence, make use of anabolic steroid to achieve this goal. However the bodybuilding or the strength muscle gain, make anabolic steroids users abuse and in major cases the users do not know the side effects. In front of these considerations, the present study evaluated the effects of the treatment with anabolic steroids and/or high intensity physical training on the corporal developing, the reproductive organs, bone parameters (strength and bone deformation) and seminal parameters as well the social behavior (aggressiveness). In other to obtain the experimental group, male Wistar rats were used, with 75 days old. The groups were divided into: Vehicle Non-Training (NV), Anabolic Steroid-Non-Training (NA), Vehicle-Training (TV) and Anabolic Steroid-Training (TA). These rats received i.m. injections, twice a week, of anabolic steroid (5mg/kg per animal of nandrolona decanoate) or vehicle (the same volume of peanut oil per animal) and the group TV and TA were submitted to physical training three times per week, during eight weeks. The body mass, wet weight of reproductive organs, femur and semen of the different groups were measured. The aggressive test was also realized in two steps: the first, within 4 weeks of the treatment and the other step in the end of the treatment, in this period the animal was isolated. It was not observed alterations in body mass of the groups. Though it was observed a benefic effect on the maximum strength of the... (Complete abstract click electronic access below)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: This study evaluated and compared bone heating, drill deformation, and drill roughness after several implant osteotomies in the guided surgery technique and the classic drilling procedure. Materials and Methods: The tibias of 20 rabbits were used. The animals were divided into a guided surgery group (GG) and a control group (CG); subgroups were then designated (G0, G1, G2, G3, and G4, corresponding to drills used 0, 10, 20, 30 and 40 times, respectively). Each animal received 10 sequential osteotomies (5 in each tibia) with each technique. Thermal changes were quantified, drill roughness was measured, and the drills were subjected to scanning electron microscopy. Results: Bone temperature generated by drilling was significantly higher in the GG than in the CG. Drill deformation in the GG and CG increased with drill use, and in the CG a significant difference between GO and groups G3 and G4 was observed. In the GG, a significant difference between GO and all other groups was found. For GG versus CG, a significant difference was found in the 40th osteotomy. Drill roughness in both groups was progressive in accordance with increased use, but there was no statistically significant difference between subgroups or between GG and CG overall. Conclusion: During preparation of implant osteotomies, the guided surgery technique generated a higher bone temperature and deformed drills more than the classic drilling procedure. The increase in tissue temperature was directly proportional to the number of times drills were used, but neither technique generated critical necrosis-inducing temperatures. Drill deformation was directly proportional to the number of times the drills were used. The roughness of the drills was directly proportional to the number of reuses in both groups but tended to be higher in the GG group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study sought to evaluate the effect of repeated implant drilling on the immediate bone-cell viability, and to evaluate drill wear by scanning electron microscopy.Materials and Methods: The tibiae of 10 rabbits were used, divided into 5 groups (G): G1 corresponded to new drills, and G2, G3, G4, and G5 corresponded to drills used 10, 20, 30, and 40 times, respectively. The animals received 10 sequential osteotomies in each tibia. The animals were euthanized immediately after the osteotomies by perfusion with 4% formaldehyde. Samples then underwent immunohistochemistry processing for ordinal qualitative analysis of osteoprotegerin (OPG), the RANK ligant (RANKL; a tumor-related necrosis factor receptor family), and osteocalcin protein immunolabels, as detected by the immunoperoxidase method and revealed with 3,3-diaminobenzidine. Drill wear and plastic deformation were analyzed by scanning electron microscopy (SEM).Results: The proteins were expressed in osteocytes of the superior bone cortical during the 40 drillings. However, in G4 and G5, a discrete increase in the expression of RANKL was observed, when compared with OPG; this increase was statistically significant in G5 (P = .016). The SEM analysis revealed major plastic deformation and drill wear in G4 and G5.Conclusion: Based on the present methodology, it may be concluded that cell viability is preserved if a less traumatic surgical protocol is used. However, the repeated use of drills alters the protein balance as of the thirtieth perforation. (C) 2008 American Association of Oral and Maxillofacial Surgeons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate the effects of ultrasound treatment and physical exercise on the velocity of bone consolidation and resistance to deformation. We performed osteotomy in the upper third of the right tibia of rats. Physical training consisted of swimming 1 h per day with a load of 5% b.w. for 30 days. Therapy with medium-intensity ultrasound was applied daily on the damaged area. Wistar rats were divided into the following groups: osteotomized sedentary animals with no ultrasound treatment (1.OSnUS), osteotomized trained animals with no ultrasound treatment (2.OTnUS), osteotomized sedentary animals with ultrasound treatment (3.OSwUS). and osteotomized trained animals with ultrasound treatment (4.OTwUS). The animals were sacrificed for the following analyses: muscle glycogen, serum alkaline phosphatase at the 5th, 10th, 20th, and 30th days, test of maximum resistance to flexion, rupture flexion and mean tibial rigidity at the 30th day. Muscle glycogen was increased at the 20th day: alkaline phosphatase was elevated at the 5th and 20th days in groups 3.OSwUS and 4.OTwUS. and decreased at the 10th day. Groups1.OSnUS and 2.OTnUS did not show significant variations. In the mechanical resistance tests, we noted that ultrasound therapy and the association of physical activity used in the present study showed significant differences in bone resistance and bone rigidity after 30 days of treatment. These facts suggest that ultrasound or physical activity, or their combination may accelerate the process of bone tissue repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moderate and controlled loading environments support or enhance osteogenesis, and, consequently, a high degree of bone-to-implant contact can be acquired. This is because when osteoprogenitor cells are exposed to limited physical deformation, their differentiation into osteoblasts is enhanced. Then, some range of microstrain is considered advantageous for bone ingrowth and osseointegration. The primary stability has been considered one of the main clinical means of controlling micromotion between the implant and the forming interfacial tissue, which helps to establish the proper mechanical environment for osteogenesis. Based on the biological aspects of immediate loading (IL), the objective of this study is to present a clinical case of maxillary arch rehabilitation using immediate loading with implant-supported fixed restoration after bone graft. Ten dental implants were placed in the maxilla 6 months after the autogenous bone graft, removed from the mandible (bilateral oblique line and chin), followed by the installation of an immediate-load fixed cross-arch implant-supported restoration because primary stability was reached for 8 implants. In addition, instructions about masticatory function and how it is related to interfacial micromotion were addressed and emphasized to the patient. The reasons for the IL were further avoidance of an interim healing phase, a potential reduction in the number of clinical interventions for the patient, and aesthetic reasons. After monitoring the rehabilitation for 8 years, the authors can conclude that maxillary IL can be performed followed by a well-established treatment planning based on computed tomography, providing immediate esthetics and function to the patient even when autogenous bone graft was previously performed in the maxilla.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to use the finite element method to evaluate the distribution of stresses and strains on the local bone tissue adjacent to the miniplate used for anchorage of orthodontic forces. Methods: A 3-dimensional model composed of a hemimandible and teeth was constructed using dental computed tomographic images, in which we assembled a miniplate with fixation screws. The uprighting and mesial movements of the mandibular second molar that was anchored with the miniplate were simulated. The miniplate was loaded with horizontal forces of 2, 5, and 15 N. A moment of 11.77 N.mm was also applied. The stress and strain distributions were analyzed, and their correlations with the bone remodeling criteria and miniplate stability were assessed. Results: When orthodontic loads were applied, peak bone strain remained within the range of bone homeostasis (100-1500 mu m strain) with a balance between bone formation and resorption. The maximum deformation was found to be 1035 mu m strain with a force of 5 N. At a force of 15 N, bone resorption was observed in the region of the screws. Conclusions: We observed more stress concentration around the screws than in the cancellous bone. The levels of stress and strain increased when the force was increased but remained within physiologic levels. The anchorage system of miniplate and screws could withstand the orthodontic forces, which did not affect the stability of the miniplate.