16 resultados para bone cements
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The main goal of the present study was to evaluate the effect of different setting accelerator agents on the developed microstructures of calcium phosphate cements (CPCs) by employing the impedance spectroscopy (IS) technique. Six compositions of CPCs were prepared from mixtures of commercial dicalcium phosphate anhydrous (DCPA) and synthesized tetracalcium phosphate (TTCP) as the solid phases. Two TTCP/DCPA molar ratios (1/1 and 1/2) and three liquid phases (aqueous solutions of Na(2)HPO(4), tartaric acid (TA) and oxalic acid (OA), 5% volume fraction) were employed. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles (ASTM standard C266-99). The hardened samples were characterized by X-ray powder diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and apparent density measurements. The IS technique was employed as a non-destructive tool to obtain information related to porosity, tortuosity and homogeneity of the cement microstructures. The formulation prepared from a TTCP/DCPA equimolar mixture and OA as the liquid phase presented the shortest I and F (12 and 20 min, respectively) in comparison to the other studied systems. XRD analyses revealed the formation of low-crystallinity hydroxyapatite (HA) (as the main phase) as well as the presence of little amounts of unreacted DCPA and TTCP after 24 h hardening in 100% relative humidity. This was related to the proposed mechanisms of dissolution of the reactants. The bands observed by FTIR allowed identifying the presence of calcium tartrate and calcium oxalate in the samples prepared from TA and OA, in addition to the characteristic bands of HA. High degree of entanglement of the formed crystals was observed by SEM in samples containing OA. SEM images were also correlated to the apparent densities of the hardened cements. Changes in porosity, tortuosity and microstructural homogeneity were determined in all samples, from IS results, when the TTCP/DCPA ratio was changed from 1/1 to 1/2. The cement formulated from an equimolar mixture of TTCP/DCPA and OA as the liquid phase presented setting times, degree of conversion to low-crystallinity HA and microstructural features suitable to be used as potential bone cement in clinical applications. The IS technique was shown to be a very sensitive and non-destructive tool to relate the paste composition to the developed microstructures. This approach could be very useful to develop calcium phosphate bone cements for specific clinical demands.
Resumo:
Cyclosporine (CsA) and tacrolimus (FK 506) exert complex, incompletely understood actions on bone. The objective of the study was to evaluate the effects of long-term tacrolimus therapy on the periodontium. Rats were treated for 60, 120, 180, and 240 days with daily subcutaneous injections of 1 mg/kg body weight of FK 506. After the experimental period, we obtained serum levels of calcium and alkaline phosphatase (ALP). After histological processing, the alveolar bone and cementum, as well as volume densities of bone (Vb) and osteoclasts (Vo), were assessed at the regions of the lower first molar. There was a tendency toward a statistically significant decrease in ALP levels with FK 506; however, serum calcium levels increased during the long periods. At 60, 180, and 240 days of treatment with FK 506, we did not observe Vb and Vo alterations. At 120 days of treatment, there was an evident decrease in Vb, but it did not show alveolar bone loss. We did not observe any alterations of cementum among rats treated with FK 506. It may be concluded that FK 506 administration did not induce side effects on the periodontium. © 2009 Elsevier Inc. All rights reserved.
Resumo:
OBJETIVO: Avaliar a biocompatibilidade do cimento de fosfato de cálcio, para verificar sua eficácia como possível substituto ósseo. MÉTODOS: No presente trabalho, foi utilizado cimento de fosfato de cálcio em rádio de 8 coelhos, separados em dois grupos (GI e GII), referentes aos tempos de observação de 12 e 26 semanas pós-operatórias, a fim de se observar as reações entre este biomaterial e o tecido ósseo do animal. Foram feitas análises radiográficas e de densitometria óptica, além de microscopia óptica e eletrônica de varredura. RESULTADOS: Observou-se, ao final do experimento, que o cimento à base de fosfato de cálcio foi parcialmente reabsorvido durante o tempo de observação de 26 semanas, apresentando biocompatibilidade, com ausência de reações indesejáveis que pudessem ser atribuídas aos implantes. CONCLUSÕES: O cimento à base de fosfato de cálcio foi biocompatível e parcialmente reabsorvido no período de 26 semanas de observação. Tempos maiores de observação são necessários para a avaliação da reabsorção.
Resumo:
This study aimed at evaluating the antisepsis of the root canal system (RCS) and periapical region (PR) provided by rotary instrumentation associated with chlorhexidine + calcium hydroxide as intracanal medicament. Chronic periapical lesions were induced in 26 pre-molar roots in two dogs. After microbiological sampling, automatic instrumentation using the Profile system and irrigation with 5.25% sodium hypochlorite solution, with a final rinse of 14.3% EDTA followed by profuse irrigation with physiological saline were carried out in 18 root canals. After drying the canals, a paste based on calcium hydroxide associated with a 2% chlorhexidine digluconate solution was placed inside them. After 21 days, the medication was removed, leaving the root canals empty and coronally sealed. After 96 hours, a final microbiological sample was obtained, followed by histomicrobiological processing by the Brown & Brenn method. Eight untreated root canals represented the control group (C-G). Based on the Mann-Whitney test at a confidence level of 5% (p < 0.05), the procedures of antisepsis used offered significant efficacy (p < 0.05) resulting in 100.0% of the canals free of microorganisms. In the C-G, an elevated incidence of various microbial morphotypes was confirmed in all sites of the RCS, with the presence of microbial colonies in the periapical region. In contrast, the experimental group showed a similar pattern of infection in the RCS, although less intense and a reduced level of periapical infection (p < 0.05). It was concluded that adequate instrumentation followed by the application of calcium hydroxide + chlorhexidine offered significant elimination of microorganisms.
Resumo:
Pulp capping is a procedure that comprises adequate protection of the pulp tissue exposed to the oral environment, aiming at the preservation of its vitality and functions. This study evaluated the response of the dental pulps of dog teeth to capping with mineral trioxide aggregate (MTA) or calcium hydroxide P.A. For that purpose, 37 teeth were divided into two groups, according to the capping material employed. Two dogs were anesthetized and, after placement of a rubber dam, their pulps were exposed in a standardized manner and protected with the experimental capping materials. The cavities were then sealed with resin-modified glass ionomer cement and restored with composite resin. After sixty days, the animals were killed and the specimens were processed in order to be analyzed with optic microscopy. It was observed that MTA presented a higher success rate compared to calcium hydroxide, presenting a lower occurrence of infection and pulp necrosis.
Resumo:
Purpose: The aim of this work was to evaluate the bone-repair process after implantation of homogenous demineralized dentin matrix (HDDM) slices in surgical defects created in the parietal bones of rabbits with alloxan-induced diabetes. Materials and Methods: Forty-eight rabbits were selected and divided into 4 groups of 12 rabbits: the control group, diabetic rabbits (D), diabetic rabbits with a PTFE barrier (D-PTFE), and diabetic rabbits with a PTFE barrier and with slices of homogenous demineralized dentin matrix (D-PTFE+HDDM). The diabetic animals received a single dose of alloxan monohydrate (90 mg/kg) intravenously on the marginal ear vein, and their blood glucose was verified daily. The rabbits were sacrificed after 15, 30, 60, and 90 days. The histologic findings show both better bone structure and significantly greater bone density, as determined by histomorphometric analysis, for the D-PTFE + HDDM group than for the other 3 groups (P < .01). It was also observed that the mean bone density increased gradually from 15 to 90 days (except in the D-PTFE group). Conclusion: It was concluded that the HDDM was biocompatible with the bone repair of diabetic rabbits and that HDDM slices stimulated bone tissue formation. Facilitation of bone repair with HDDM could be useful in diabetic patients.
Resumo:
The purpose of this study was to evaluate the radiopacity of root canal sealers containing calcium hydroxide and MTA (Acroseal, Sealer 26, Sealapex, Endo CPM Sealer, Epiphany and Intrafill). Five disc-shaped specimens (10 x 1 mm) were fabricated from each material, according to the ISO 6876/2001 standard. After setting of the materials, radiographs were taken using occlusal film and a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The dental X-ray unit (GE1000) was set at 50 kVp, 10 mA, 18 pulses/s and distance of 33.5 cm. The radiographs were digitized and the radiopacity compared to that of the aluminum stepwedge using VIXWIN-2000 software (Gendex). The data (mmAl) were analyzed statistically by ANOVA and Tukey's test at the 5% significance level. Epiphany and Intrafill presented the highest radiopacity values (8.3 mmAl and 7.5 mmAl respectively, p < 0.05) followed by Sealer 26 (6.3 mmAl), Sealapex (6.1 mmAl) and Endo CPM Sealer (6 mmAl). Acroseal was the least radiopaque material (4 mmAl, p < 0.05). In conclusion, the calcium hydroxide- and MTA-containing root canal sealers had different radiopacities. However, all materials presented radiopacity values above the minimum recommended by the ISO standard. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
Newly available materials for retrograde obturation should have their sealing properties evaluated. The goal of this study was to evaluate the sealing ability of Endo CPM sealer, an MTA-based endodontic cement. Single-rooted extracted human teeth were endodontically treated. After apical sectioning, retrograde cavities were prepared. Teeth were divided into five experimental groups (n=12), in which the following materials were used: Sealer 26 (S26), white Mineral Trioxide Aggregate (MTA), Endo CPM Sealer (CPM1), Endo CPM Sealer in thicker consistency (CPM 2), and zinc oxide and eugenol cement (ZOE), and two control groups (n=3). After retrograde obturation, the teeth were immersed in 0.2% rhodamine B dye for 48 hours in a vacuum chamber Marginal leakage data were subjected to ANOVA and Tukey tests at 5% significance level. S26 presented greater sealing ability (p<0.05) than ZOE, MTA, CPM1, and CPM2, all of which had similar results (p>0.05). We concluded that Sealer 26 has the greatest sealing ability. Endo CPM Sealer, with sealing ability similar to MTA, could be used as a retrograde obturation material.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Several cements are used as biomaterials. Biopolymers such as chitosan and collagen exhibit excellent biocompatibility and can be used in the remodeling of bone tissue. The cement must have high mechanical strength and compatibility with original tissue. In this context, the objective of this study was to extract, characterize and cross-link collagen from bovine tendon, forlater associate it with chitosan and calcium phosphate to obtain cements for bone regeneration. Glutaraldehyde was used as cross-linker in 0.1, 0.5, 1.0 and 10% concentration. Infrared analysis confirmed the presence of functional groups characteristic of collagen, whereas the capacity of water absorption decreased with the increasing of cross-linking degree. Denaturation temperatures of collagen samples were obtained by Differential Scanning Calorimetry and Scanning Electron Microscopy showed the fiber structure characteristics of collagen, which were more organized for high degree of cross-linking samples.
Resumo:
The purpose was to evaluate the cytotoxicity of two novel formulations (alpha and beta) of calcium phosphate cements. Positive control, represented by a commercial hydroxyapatite cement, and negative control were included for comparative purposes. A continuous lineage of fibroblastic cells was used, and the effect of the tested materials on both cell proliferation and viability was assessed by counting cell number on hemocytometer and by the trypan blue exclusion test, respectively. Study design attempted to simulate clinical use by allowing direct and indirect contact of cells and cements. Results were analyzed by the Kruskal-Wallis test and indicated that the beta formulation was extremely cytotoxic (P < 0.001), because this material induced the greatest reduction on cell proliferation and viability. The alpha formulation behaved similarly to the positive control regarding its effect on cell proliferation and viability. Thus, it is concluded that alpha formulation has promise for further evaluation of its behavior in vivo.
Resumo:
Bioceramics with different Ca/P ratio were prepared from a mechanical mixture of NaPO3, CaCO3, Ca(OH)2 and phosphate buffer solution and implanted in rats subcutaneous tissues. The cements were characterized by Thermo gravimetric analysis (TG-TDA), X-ray diffraction and 31P-NMR. The implant sites were excised after 1, 4 and 16 weeks, fixed, dehydrated, included in paraffin wax for serial cutting and examined under the light transmitted microscope. They were biocompatible and biodegradable when implanted in rat subcutaneous. None of the materials induced ectopic osteogenesis. According to the results, the studied materials seem to be able for manufacturing reabsorbable bone implants.
Resumo:
The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.