5 resultados para bonded copper interconnects
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The reaction of Cu(NO3)(2).3H(2)O with 1,3-propanediamine (pn), in the presence of NaN3, afforded a 1:1 co-crystal formed by [Cu(NO3)(2)(pn)(2)] and [Cu(N-3)(NO3)(pn)(2)] (1 and 2), which were characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. In both compounds, the copper(II) centers are in a distorted octahedral environment, formed by four N atoms of two bidentate pn ligands in the basal plane, whereas the axial bonds are formed by two O atoms from the nitrate ligands in 1 and one O atom from the nitrate ligand and one N atom from the azide ion in 2. The asymmetric unit of the crystal consists of two crystallographically independent 1 and 2 complexes, which are held together in a 3D network by a series of N - H center dot center dot center dot O and N - H center dot center dot center dot N hydrogen bonds, as well C - H center dot center dot center dot O interactions. New supramolecular synthons are identified by the occurrence of two geometrically distinct molecular recognition patterns involving the NO3- ion and amino groups from pn ligands.
Resumo:
The compounds [Cu(N-3)(NSC)(tmen)](n) (1), [Cu(N-3)(NCO)(tmen)](n) (2) and [Cu(N-3)(NCO)(tmen)](2) (3) (tmen = N,N,N',N'-tetramethylethylenediamine) were synthesized and studied by i.r. spectroscopy. Single crystals of compounds (1) and (3) were obtained and characterized by X-ray diffraction. The structure of compound (1) consists of neutral chains of copper(II) ions bridged by a single azido ligand showing the asymmetric end-to-end coordination fashion. Each copper ion is also surrounded by the other three nitrogen atoms: two from one N,N,N',N'-tetramethylethylenediamine and one from a terminal bonded thiocyanate group. Compound (2) decomposes slowly in acetone and the product formed [Cu(N-3)(NCO)(tmen)](2) (3) crystallizes in the monoclinic system (P2(1)). The structure of (3) consists of dimeric units in which the Cu atoms are penta-coordinated and connected by p(1,3) bridging azido and cyanate ligands. In both cases the five coordinated atoms give rise to a slightly distorted square-based pyramid coordination geometry at each copper ion. The thermal behavior of [Cu(N-3)(NSC)(tmen)](n) (1) and [Cu(N-3)(NCO)(tmen)](n) (2) were investigated and the final decomposition products were identified by X-ray powder diagrams.
Resumo:
The aim of this in vitro study was to evaluate marginal leakage in class V restorations in primary teeth restored with amalgam, using three different techniques. Thirty maxillary anterior primary teeth, clinically sound and naturally exfoliated, were used. In group 1 (n = 10), two thin layers of a copal varnish (Cavitine) were applied. In group 2 (n = 10), Scotchbond Multi-Purpose Plus, a dual adhesive system, was used according to manufacturer instructions. In group 3 (n = 10), One-Step adhesive system in combination with a low-viscosity resin (Resinomer) were used according to manufacturer instructions. All samples were restored with a high-copper dental amalgam alloy (GS 80, SDI). After restoration, the samples were stored in normal saline at 37 degrees C for 72 h. The specimens were polished, thermocycled (500 cycles, 5 degrees and 55 degrees C, 30-s dwell time) and impermeabilized with fingernail polish to within 1.0 mm of the restoration margins. The teeth were then placed in 0.5% methylene blue for 4 h. Finally, the samples were sectioned and evaluated for marginal leakage. The Kruskal-Wallis test showed that the filled adhesive resin (group 3) had the least microleakage. There was no significant difference between groups 1 and 2.
Resumo:
A silica surface chemically modified with [3-(2,2'-dipyridylamine) propyl] groups was prepared, characterized, and evaluated for its metal ion preconcentration in fuel ethanol. To our knowledge, we are the first authors who have reported the present modification on silica gel surface. The material was characterized using infrared spectra, scanning electronic microscopy, and 13C and 29Si solid-state NMR spectra. Batch and column experiments were conducted to investigate for metal ion removal from fuel ethanol. The results showed that the Langmuir model describes the sorption equilibrium data of the metal ions in a satisfactory way. From the Langmuir isotherms, the following maximum adsorption capacities (in mmolg -1) were determined: 1.81 for Fe(III), 1.75 for Cr(III), 1.30 for Cu(II), 1.25 for Co(II), 1.15 for Pb(II), 0.95 for Ni(II), and 0.87 for Zn(II). Thermodynamic functions, the change of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) showed that the adsorption of metal ions onto Si-Pr-DPA was feasible, spontaneous, and endothermic. The sorption-desorption of the metal ions made possible the development of a preconcentration and quantification method of metal ions in fuel ethanol. © 2012 Elsevier Inc.
Resumo:
Silica gel having a particle size between 0.2 and 0.05 mm and a specific surface area, S BET = 473 m 2 g -1, was chemically modified with benzimidazole. Adsorption isotherms of CuX 2 (X = Cl, Br or ClO 4) from ethanol and acetone solutions were studied at 298 K. The metal is bonded to the surface through the free nitrogen atom of the attached benzimidazole. The average number of ligands co-ordinated to the central metal ion was shown to depend on the solid surface loading by the solute. At low loading the electronic and ESR spectral parameters indicated that the copper ion is in a distorted-tetragonal symmetry field.