192 resultados para body temperature

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burrowing mammals usually have low respiratory sensitivity to hypoxia and hypercapnia. However, the interaction between ventilation (V), metabolism and body temperature (Tb) during hypoxic-hypercapnia has never been addressed. We tested the hypothesis that Clyomys bishopi, a burrowing rodent of the Brazilian cerrado, shows a small ventilatory response to hypoxic-hypercapnia, accompanied by a marked drop in Tb and metabolism. V, Tb and O-2 consumption (VO2) of C. bishopi were measured during exposure to air, hypoxia (10% and 7% O-2), hypercapnia (3% and 5% CO2) and hypoxic-hypercapnia (10% O-2 + 3% CO2). Hypoxia of 7% but not 10%, caused a significant increase in V, and a significant drop in Tb. Both hypoxic levels decreased VO2 and 7% O-2 significantly increased V/VO2. Hypercapnia of 5%, but not 3%, elicited a significant increase in V, although no significant change in Tb, VO2 or V/VO2 was detected. A combination of 10% O-2 and 3% CO2 had minor effects on V and Tb, while VO2 decreased and V/VO2 tended to increase. We conclude that C. bishopi has a low sensitivity not only to hypoxia and hypercapnia, but also to hypoxic-hypercapnia, manifested by a biphasic ventilatory response, a drop in metabolism and a tendency to increase V/VO2. The effect of hypoxic-hypercapnia was the summation of the hypoxia and hypercapnia effects, with respiratory responses tending to have hypercapnic patterns while metabolic responses, hypoxic patterns. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In amphibians solar basking far from water sources is relatively uncommon since the highly permeable amphibian skin does not represent a significant barrier to the accompanying risk of losing water by evaporation. A South American frog, Bokermannohyla alvarengai (Bokermann 1956), however, spends a significant amount of the day exposed to full sun and relatively high temperatures. The means by which this frog copes with potentially high rates of evaporative water loss and high body temperatures are unknown. Thus, in this study, skin colour changes, body surface temperature, and evaporative water loss rates were examined under a mixture of field and laboratory conditions to ascertain whether changes in skin reflectivity play an important role in this animal's thermal and hydric balance. Field data demonstrated a tight correlation between the lightness of skin colour and frog temperature, with lighter frogs being captured possessing higher body temperatures. Laboratory experiments supported this relationship, revealing that frogs kept in the dark or at lower temperatures (20 degrees C) had darker skin colours, whereas frogs kept in the light or higher temperatures (30 degrees C) had skin colours of a lighter hue. Light exhibited a stronger influence on skin colour than temperature alone, suggesting that colour change is triggered by the increase in incident solar energy and in anticipation of changes in body temperature. This conclusion is corroborated by the observation that cold, darkly coloured frogs placed in the sun rapidly became lighter in colour during the initial warming up period (over the first 5 min), after which they warmed up more slowly and underwent a further, albeit slower, lightening of skin colour. Surprisingly, despite its natural disposition to bask in the sun, this species does not possess a 'waterproof' skin, since its rates of evaporative water loss were not dissimilar from many hylid species that live in arboreal or semi-aquatic environments. The natural history of B. alvarengai is largely unknown and, therefore, it is likely that the herein reported colour change and basking behaviour represent a complex interaction between thermoregulation and water balance with other ecologically relevant functions, such as crypsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body temperatures and thermoregulatory behaviour of the teiid lizard Ameiva ameiva inhabiting the edge and the understory were studied in Central Amazonian forests Despite of differences in the thermal profile of the habitates. the mean body temperature was the some for active lizards observed at the edge or inside the forest. where only slight peculiarities in thermoregulatory behaviour were observed. A. ameiva is capable of maintaining body temperature significantly above microhabitat temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nychthemeral and annual rhythms of the rectal temperature were determined for Corriedale sheep in a tropical climate. The minimum rectal temperature averaged 39.55 degrees C at 0500 hours in summer, and 38.87 degrees C at 0600 hours in winter. The maximum was 40.03 degrees C in summer (1700 hours) and 39.33 degrees C in winter (1830 hours). Annual cycle of the rectal temperature showed a minimum in July and maximum in December.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing air movement over poultry by using fans (ventilation) has become an accepted means of reducing environmental heat stress over the last several years. The purpose of this study was to evaluate the effect of air velocity and exposure time to ventilation on body surface and rectal temperature of broiler chickens. Male broiler chickens aged 36-42 days were placed in individual wire cages and exposed to five different air velocities (5.7, 4.2, 3.1, 2.4, or 1.8 m/sec). Throughout the experiment head, back, leg, and rectal temperatures were monitored every 10 min during a 30-min period for each air velocity. The data showed that exposure time to the wind affected (P<.05) leg and body temperature, with a rapid reduction being observed during the first 10 min. There was a reduction in leg temperature with air velocity of 2 m/sec; however, air velocity lower than 4.5 m/sec was not effective in decreasing head and back temperature. The results suggest that air velocity of 2 m/sec, in air temperature of 29 degrees C, improves heat loss in the birds. The data also indicate that exposure time to ventilation seems to be a critical point in the maintenance of bird thermal homeostasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examined how the standard metabolic rate of tegu lizards, a species that undergoes large ontogenetic changes in body weight with associated changes in life-history traits, is affected by changes in body mass, body temperature, season, and life-history traits. We measured rates of oxygen consumption ((V) over dot o(2)) in 90 individuals ranging in body mass from 10.4. g to 3.75 kg at three experimental temperatures ( 17 degrees, 25 degrees, and 30 degrees C) over the four seasons. We found that standard metabolic rate scaled to the power of 0.84 of body mass at all experimental temperatures in all seasons and that thermal sensitivity of metabolism was relatively low (Q(10) approximate to 2.0-2.5) over the range from 17 degrees to 30 degrees C regardless of body size or season. Metabolic rates did vary seasonally, being higher in spring and summer than in autumn and winter at the same temperatures, and this was true regardless of animal size. Finally, in this study, the changes in life-history traits that occurred ontogenetically were not accompanied by significant changes in metabolic rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ectotherm antipredator behaviour might be strongly affected both by body temperature and size: when environmental temperatures do not favour maximal locomotor performance, large individuals may confront predators, whereas small animals may flee, simply because they have no other option. However, integration of body size and temperature effects is rarely approached in the study of antipredator behaviour in vertebrate ectotherms. In the present study we investigated whether temperature affects antipredator responses of tegu lizards, Tupinambis merianae, with distinct body sizes, testing the hypothesis that small tegus (juveniles) run away from predators regardless of the environmental temperature, because defensive aggression may not be an effective predator deterrent, whereas adults, which are larger, use aggressive defence at low temperatures, when running performance might be suboptimal. We recorded responses of juvenile (small) and adult (large) tegu lizards to a simulated predatory attack at five environmental temperatures in the laboratory. Most differences between the two size classes were observed at low temperatures: large tegus were more aggressive overall than were small tegus at all temperatures tested, but at lower temperatures, the small lizards often used escape responses whereas the large ones either adopted a defensive posture or remained inactive. These results provide strong evidence that body size and temperature affect the antipredator responses of vertebrate ectotherms. We discuss the complex and intricate network of evolutionary and ecological parameters that are likely to be involved in the evolution of such interactions. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A transferência de energia térmica da superfície corporal para a água é provavelmente o aspecto mais importante do equilíbrio térmico em mamíferos marinhos, mas os respectivos cálculos dependem do conhecimento da temperatura da superfície, T S, cuja medição direta em animais em liberdade constitui um problema difícil de resolver. Um método iterativo é proposto para a predição de T S de cetáceos em liberdade, a partir da temperatura corporal profunda, da velocidade de deslocamento e da temperatura e propriedades termodinâmicas da água.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In most reptiles, the ventilatory response to hypercapnia consists of large increases in tidal volume (V-T), whereas the effects on breathing frequency (f(R)) are more variable. The increased V-T seems to arise from direct inhibition of pulmonary stretch receptors. Most reptiles also exhibit a transitory increase in ventilation upon removal of CO2 and this post-hypercapnic hyperpnea may consist of changes in both V-T and f(R). While it is well established that increased body temperature augments the ventilatory response to hypercapnia, the effects of temperature on the post-hypercapnic hyperpnea is less described. In the present study, we characterise the ventilatory response of the agamid lizard Uromastyx aegyptius to hypercapnia and upon the return to air at 25 and 35 degreesC. At both temperatures, hypercapnia caused large increases in V-T and small reductions in f(R), that were most pronounced at the higher temperature. The post-hypercapnic hyperpnea, which mainly consisted of increased fR, was numerically larger at 35 compared to 25 degreesC. However, when expressed as a proportion of the levels of ventilation reached during steady-state hypercapnia, the post-hypercapnic hyperpnea was largest at 25 degreesC. Some individuals exhibited buccal pumping where each expiratory thoracic breath was followed by numerous small forced inhalations caused by contractions of the buccal cavity. This breathing pattern was most pronounced during severe hypercapnia and particularly evident during the post-hypercapnic hyperpnea. (C) 2002 Published by Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

These experiments were carried out to study the effects of acute cold exposure (0-2°C/4 hr) on rectal temperature, blood glucose and plasma free fatty acids (FFA) in alloxan-diabetic rats. Male Wistar rats weighing 170-190 g were used and diabetes was induced by i.v. alloxan injection (40 mg/kg body wt). Cold exposure produced severe hypothermia in diabetic rats. After 4 hr of cold, blood glucose of diabetic rats was reduced from 296±16 to 86t±12 mg/dl (P<0.01), and FFA increased slightly, but was not statistically different (P>0.05) from the initial value. As expected, interscapular brown adipose tissue (IBAT) and retroperitoneal and epididymal white adipose tissues were significantly lower in diabetic than in control rats. Cold exposure reduced total IBAT lipids in control but not in diabetic animals. The results of this experiment suggest that diabetic rats were unable to maintain body temperature in the cold, probably because of a failure to generate an adequate amount of heat by nonshivering thermogenesis in brown adipose tissue.