82 resultados para body fluid
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We have studied the effects of L-NG-nitro arginine methyl esther (L-NAME), L-arginine (LAR), inhibitor and a donating nitric oxide agent on the alterations of salivary flow, water intake, arterial blood pressure (MAP) and heart rate (HR) induced by the injection pilocarpine into the subfornical organ (SFO). Rats (Holtzman 250-300 g) were anesthetized with 2, 2, 2-tribromoethanol (20 mg/100 kg b. wt.) and a stainless steel carmula were implanted into their SFO. The volume of injection was 0.2 mu l. The amount of saliva secretion was studied over a 5-min period. Pilocarpine (40 mu g), L-NAME (40 mu g) and LAR (30 mu g) were used in all experiments for the injection into the SFO. Pilocarpine (10, 20, 40, 80 and 160 mu g) injected into SFO elicited a concentration-dependent increase in salivary secretion. L-NAME injected prior to pilocarpine into the SFO increased salivary secretion and water intake due to the effect of pilocarpine. LAR injected prior to pilocarpine into the SFO attenuated the salivary secretion and water intake. Pilocarpine, injected into the SFO increased the MAP and decreased heart rate (HR). L-NAME injected prior to pilocarpine into the SFO potentiated the pressor effect of pilocarpine with a decrease in HR. LAR injected into the SFO prior to pilocarpine attenuated the increase in MAP with no changes in HR. The present study suggests that the SFO nitrergic cells interfere in the cholinergic pathways implicated in the control of salivary secretion, fluid and cardiovascular homeostasis. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
The purpose of this work was to evaluate the Ti-35Nb-7Zr experimental alloy after surface treatment and soaking in solution body fluid (SBF) to form bonelike apatite. The Ti-35Nb-7Zr alloy was produced from commercially pure materials (Ti, Nb and Zr) by an arc melting furnace. All ingots were submitted to sequences of heat treatment (1100 °C/2 h and water quenching), cold working by swaging procedures and heat treatment (1100 °C/2 h and water quenching). Discs with 13 mm diameter and 3 mm in thickness were cut. The samples were immersed in NaOH aqueous solution with 5 M at 60 °C for 72 h, washed with distilled water and dried at 40 °C for 24 h. After the alkaline treatment, samples were heat treated in both conditions: at 450 and 600 °C for 1 h in an electrical furnace in air. Then, they were soaking in SBF for 24 h to form an apatite layer on the surface. The surfaces were investigated by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), infrared spectroscopy (FTIR) and contact angle measurements. The results indicate that calcium phosphate could form on surface of Ti-35Nb-7Zr experimental alloy. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.
Resumo:
INTRODUCTION: Regenerative therapies using biomaterials require accurate information on interactions between the implanted material and the human body. To improve the process of bone regeneration it is necessary to obtain a better understanding of the influence of the surfaces on the early stages of osseointegration. This work aims to investigate the dynamic interaction between simulated body fluid (SBF) and titanium surfaces (Ti cp) immediately after their first contact. METHODS: Ti cp samples were passed through physicochemical treatments after immersion in acid solution, alkaline solution and solutions containing TiO2 and Ca2+, to obtain three different surfaces. These were characterized by electron microscopy and free energy estimates. The evaluation of the interaction with SBF was performed by measuring the dynamic contact angles after contacting the surfaces. RESULTS: The effects of SBF wettability were more significant on surfaces according to high energy estimates. A comparative analysis of the three types of surfaces showed that fluid spreading was greater in samples with greater polar components, indicating that the surface nature influences interactions in the early stages of osseointegration. CONCLUSION: The results indicate the influence of polar interactions in the dynamic wettability of the SBF. It is possible that these interactions can also influence cellular viability on surfaces. Based on these results, new experiments are being designed to improve the presented methodology as a tool for the evaluation of biomaterials without the need for in vivo experiments.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.
Resumo:
Noradrenaline (NOR) is a neurotransmitter presenl in the central nervous system which is related to the control of ingestive behavior of food and fluids. We describe here the relationship between NOR and intake of water and NaCl solution, fluids that are essential for a normal body fluid electrolytic balance. Central NOR has an inhibitory effect on fluid intake, but it either induces or not alterations in food intake. Several ways of inducing water intake, such as water deprivation, meal-associated water intake, administration of angiotensinergic, cholinergic or beta-adrenergic agonists, or administration of hyperosmotic solutions, are inhibited by alpha-adrenergic agonists. Need-induced sodium intake by sodium-depleted animals is also inhibited by alpha-adrenergic agonists. NOR can also facilitate fluid intake. Water intake is elicited by NOR and the integrity of central noradrenergic systems is necessary for a normal expression of water or salt intake in dehydrated animals. The angiotensinergic component of either behavior apparently depends on a central noradrenergic system. NOR probably facililates fluid intake by acting on postsynaptic receptors, but we do not know how it inhibits fluid infake. The inhibitory and facilitatory effects of NOR on ingestive behavior suggest a dual role for this neurotransmitter in the control of hydromineral fluid intake.
Resumo:
Background and Purpose: The circadian rhythm of melatonin in saliva or plasma, or of the melatonin metabolite 6-sulfatoxymelatonin (a6MTs) in urine, is a defining feature of suprachiasmatic nucleus (SCN) function, the body's endogenous oscillatory pacemaker. The primary objective of this review is to ascertain the clinical benefits and limitations of current methodologies employed for detection and quantification of melatonin in biological fluids and tissues. Data Identification: A search of the English-language literature (Medline) and a systematic review of published articles were carried out. Study Selection: Articles that specified both the methodology for quantifying melatonin and indicated the clinical purpose were chosen for inclusion in the review. Data Extraction: The authors critically evaluated the methodological issues associated with various tools and techniques (e.g. standards, protocols, and procedures). Results of Data Synthesis: Melatonin measurements are useful for evaluating problems related to the onset or offset of sleep and for assessing phase delays or advances of rhythms in entrained individuals. They have also become an important tool for psychiatric diagnosis, their use being recommended for phase typing in patients suffering from sleep and mood disorders. Additionally, there has been a continuous interest in the use of melatonin as a marker for neoplasms of the pineal region. Melatonin decreases such as found with aging are or post pinealectomy can cause alterations in the sleep/wake cycle. The development of sensitive and selective methods for the precise detection of melatonin in tissues and fluids has increasingly been shown to have direct relevance for clinical decision making. Conclusions: Due to melatonin's low concentration, as well as the coexistence of numerous other compounds in the blood, the routine determination of melatonin has been an analytical challenge. The available evidence indicates however that these challenges can be overcome and consequently that evaluation of melatonin's presence and activity can be an accessible and useful tool for clinical diagnosis. © Springer-Verlag 2010.
Resumo:
Purpose: Accumulating evidence suggests an association between body volume overload and inflammation in chronic kidney diseases. The purpose of this study was to evaluate the effect of dietary sodium reduction in body fluid volume, blood pressure (BP), and inflammatory state in hemodialysis (HD) patients. Methods: In this prospective controlled study, adult patients on HD for at least 90 days and those with C-reactive protein (CRP) levels ≥0.7 mg/dl were randomly allocated into two groups: group A, which included 21 patients treated with 2 g of sodium restriction on their habitual diet; and group B, which included 18 controls. Clinical, inflammatory, biochemical, hematological, and nutritional markers were assessed at baseline and after 8 and 16 weeks. Results: Baseline characteristics were not significantly different between the groups. Group A showed a significant reduction in serum concentrations of CRP, tumor necrosis factor-α, and interleukin-6 during the study period, while BP and extracellular water (ECW) did not change. In group B, there were no changes in serum concentrations of inflammatory markers, BP, and ECW. Conclusions: Dietary sodium restriction is associated with the attenuation of the inflammatory state, without changes in BP and ECW, suggesting inhibition of a salt-induced inflammatory response. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several findings suggest that catecholaminergic neurones in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. The present study sought to determine the effects of lesions of these neurones on the cardiovascular responses induced by changes in circulating volume. All experiments were performed in male Wistar rats (320-360 g). Medullary catecholaminergic neurones were lesioned by microinjection of anti-dopamine beta-hydroxylase-saporin (6.3 ng in 60 nl; SAP rats, n = 14) into the CVLM, whereas sham rats received microinjections of free saporin (1.3 ng in 60 nl, n = 15). Two weeks later, rats were anaesthetized (urethane, 1.2 g kg(-1), I.V..), instrumented for measurement of mean arterial pressure (MAP), renal blood flow (RBF) and renal vascular conductance (RVC), and infused with hypertonic saline (HS; 3 M NaCl, 0.18 ml (100 g body weight)(-1), I.V.) or an isotonic solution (volume expansion, VE; 4% Ficoll, 1% of body weight, I.V.). In sham rats, HS induced sustained increases in RBF and RVC (155 +/- 7 and 145 +/- 6% of baseline, at 20 min after HS). In SAP rats, RBF responses to HS were blunted (125 +/- 6%) and RVC increases were abolished (108 +/- 5%) 20 min after HS. Isotonic solution increased RBF and RVC in sham rats (149 +/- 10 and 145 +/- 12% of baseline, respectively, at 20 min). These responses were reduced in SAP rats (131 +/- 6 and 126 +/- 5%, respectively, at 20 min). Pressor responses to HS were larger in SAP rats than in sham rats (17 +/- 5 versus 9 +/- 2 mmHg, at 20 min), whereas during VE these responses were similar in both groups (6 +/- 3 versus 4 +/- 6 mmHg, at 20 min). Immunohistochemical analysis indicates that microinjections of anti-D beta H-saporin produced extensive destruction within the A1/C1 cell groups in the CVLM. These results suggest that catecholaminergic neurones mediate the cardiovascular responses to VE or increases in plasma sodium levels.
Resumo:
Hypothalamic paraventricular nucleus (PVN) has an important role in the regulation of water and sodium intake. Several researches described the presence of 5-HT1 receptors in the central nervous system. 5-HTIA was one of the prime receptors identified and it is found in the somatodendritic and post-synaptic forms. Therefore, the aim of this study was to investigate the participation of serotonergic 5-HT1A receptors in the PVN on the sodium intake induced by sodium depletion followed by 24 h of deprivation (injection of the diuretic furosemide plus 24 h of sodium-deficient diet). Rats (280-320 g) were submitted to the implant of cannulas bilaterally in the PVN. 5-HT injections (10 and 20 mu g/0.2 mu l) in the PVN reduced NaCl 1.8% intake. 8-OH-DPAT injections (2.5 and 5.0 fig/0.2 mu l) in the PVN also reduced NaCl 1.8% intake. pMPPF bilateral injections (5-HT1A antagonist) previously to 8-OH-DPAT injections have completely blocked the inhibitory effect over NaCl 1.8% intake. 5-HT1A antagonists partially reduced the inhibitory effect of 5-HT on NaCl 1.8% intake induced by sodium depletion. In contrast, the intake of palatable solution (2% sucrose) under body fluid-replete conditions was not changed after bilateral PVN 8-OH-DPTA injections. The results show that 5HT(1A) serotonergic mechanisms in the PVN modulate sodium intake induced by sodium loss. The finding that sucrose intake was not affected by PVN 5-HT1A activation suggests that the effects of the 5-HT1A treatments on the intake of NaCl are not due to mechanisms producing a nonspecific decrease of all ingestive behaviors. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Water deprivation-induced thirst is explained by the double-depletion hypothesis, which predicts that dehydration of the two major body fluid compartments, the extracellular and intracellular compartments, activates signals that combine centrally to induce water intake. However, sodium appetite is also elicited by water deprivation. In this brief review, we stress the importance of the water-depletion and partial extracellular fluid-repletion protocol which permits the distinction between sodium appetite and thirst. Consistent enhancement or a de novo production of sodium intake induced by deactivation of inhibitory nuclei (e.g., lateral parabrachial nucleus) or hormones (oxytocin, atrial natriuretic peptide), in water-deprived, extracellular-dehydrated or, contrary to tradition, intracellular-dehydrated rats, suggests that sodium appetite and thirst share more mechanisms than previously thought. Water deprivation has physiological and health effects in humans that might be related to the salt craving shown by our species.