313 resultados para blood lactate concentration

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tegtbur et al. [23] devised a new method able to estimate the intensity at maximal lactate steady state termed lactate minimum test. According to Billat et al. [7], no studies have yet been published on the affect of training on highest blood lactate concentration that can be maintained over time without continual blood lactate accumulation. Therefore, the aim of the present study was to verify the effect of soccer training on the running speed and the blood lactate concentration (BLC) at the lactate minimum test (Lac(min)). Thirteen Brazilian male professional soccer players, all members of the same team playing at National level, volunteered for this study. Measurements were carried out before (pre) and after (post) eight weeks of soccer training. The Lac(min) test was adapted to the procedures reported by Tegtbur et al. [23]. The running speed at the Lac(min) test was taken when the gradient of the line was zero. Differences in running speed and blood lactate concentration at the Lac(min) test before (pre) and after (post) the training program were evaluated by Student's paired t-test. The training program increased the running speed at the Lac(min) test (14.94 +/- 0.21 vs. 15.44 +/- 0.42* km(.)h(-1)) and the blood lactate concentration (5.11 +/- 2.31 vs. 6.93 +/- 1.33* mmol(.)L(-1)). The enhance in the blood lactate concentration may be explained by an increase in the lactate/H+ transport capacity of human skeletal muscle verified by other authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A swimming periodized experimental training model in rats in which different training protocols (TP) were classified in aerobic (A) and anaerobic (AN) intensity levels. The purpose of the present study was to verify if the classification of the TP used in the periodized training experimental model presented the blood lactate concentration [La] response adequate to the aerobic and anaerobic intensities levels. Twenty three male Wistar rats were divided into three groups. Two groups of swimming training (continuous, CT, n = 7, and periodized training, PET, n = 7) rats were evaluated during 5 weeks in eight different TP (TP-1 to TP-8) through the analysis of the [La] response. The third group was the sedentary control (SC, n = 9). The TP were classified in five intensity levels, three aerobic (A-1, A-2, A-3) and two anaerobic (AN-1, AN-2). Analysis of variance (ANOVA one-way, P<0.05) indicated significant differences in the [La] among the TP and among the five intensity levels. All TP of the A-2 and A-3 intensity levels differed from the A-1 and AN-1. The A-1 and AN-1 also differed among them. These findings demonstrate that the TP were classified properly at different levels of aerobic and anaerobic intensities, as based on the [La] response in a way similar to that of high performance swimming with humans. The results offer new perspectives for the study of exercise training in swimming rats at different levels intensity for performance or for health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective This study investigated how consumption of orange juice associated with aerobic training affected serum lipids and physical characteristics of overweight middle-aged womenMethods The experimental group consisted of 13 women who consumed 500 mL/d of orange juice and did 1 h aerobic training 3 times a week for 3 months The control group consisted of another 13 women who did the same aerobic training program but did not consume orange juiceResults At the end of the experiment the control group lost an average of 15% of fat mass (P < 0 05) and 25% of weight (P < 0 05) whereas the experimental group lost 11% of fat mass and 1 2% of weight (P < 0 05) Consumption of orange juice by the experimental group was associated with Increased dietary intake of vitamin C and folate by 126% and 61% respectively Serum LDL-C decreased 15% (P < 0 05) and HDL-C increased 18% (P < 0 05) in the experimental group but no significant change was observed in the control group Both groups improved the anaerobic threshold by 20% (P < 0 05) but blood lactate concentration decreased 27% in the experimental group compared to the 17% control group suggesting that experimental group has less muscle fatigue and better response to trainingConclusions The consumption of 500 mL/d of orange juice associated with aerobic training in overweight women decreased cardiovascular disease risk by reducing LDL-C levels and increasing HDL-C levels This association also decreased blood lactate concentration and increased anaerobic threshold showing some improvement in the physical performance (C) 2010 Elsevier B.V. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has previously been shown that measurement of the critical speed is a non-invasive method of estimating the blood lactate response during exercise. However, its validity in children has yet to be demonstrated. The aims of this study were: (1) to verify if the critical speed determined in accordance with the protocol of Wakayoshi et al. is a non-invasive means of estimating the swimming speed equivalent to a blood lactate concentration of 4 mmol . l(-1) in children aged 10-12 years; and (2) to establish whether standard of performance has an effect on its determination. Sixteen swimmers were divided into two groups: beginners and trained. They initially completed a protocol for determination of speed equivalent to a blood lactate concentration of 4 mmol . l(-1). Later, during training sessions, maximum efforts were swum over distances of 50, 100 and 200 m for the calculation of the critical speed. The speeds equivalent to a blood lactate concentration of 4 mmol . l(-1) (beginners = 0.82 +/- 0.09 m . s(-1), trained = 1.19 +/- 0.11 m . s(-1); mean +/- s) were significantly faster than the critical speeds (beginners = 0.78 +/- 0.25 m . s(-1), trained = 1.08 +/- 0.04 m . s(-1)) in both groups. There was a high correlation between speed at a blood lactate concentration of 4 mmol . l(-1) and the critical speed for the beginners (r = 0.96, P < 0.001), but not for the trained group (r = 0.60, P > 0.05). The blood lactate concentration corresponding to the critical speed was 2.7 +/- 1.1 and 3.1 +/- 0.4 mmol . l(-1) for the beginners and trained group respectively. The percent difference between speed at a blood lactate concentration of 4 mmol . l(-1) and the critical speed was not significantly different between the two groups. At all distances studied, swimming performance was significantly faster in the trained group. Our results suggest that the critical speed underestimates swimming intensity corresponding to a blood lactate concentration of 4 mmol . l(-1) in children aged 10-12 years and that standard of performance does not affect the determination of the critical speed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the effect of exercise mode on the blood lactate removal during recovery of high-intensity exercise. Nine male individuals performed the following tests in order to determine the blood lactate removal: Running - 2x200 m, the subjects ran at their maximum capacity, and rested 2 min between each bout. Swimming - 2x50 m, the subjects swam at their maximum capacity, and rested 2 min between each bout. Each test was realized on different days with three recovery modes: passive (sitting down), swimming, or running. Recovery exercise intensity was corresponding to the aerobic threshold. All recovery activities lasted 30 min. The two forms of active recovery were initiated 2 min after the end of high-intensity exercise and lasted 15 min, and were followed by 13 min of seated rest. After 1,7, 12,17, and 30 min of the end of high-intensity exercise, blood samples (25 mu l) were collected in order to determine the blood lactate concentration. By linear regression, between the logarithm of lactate concentration and its respective time of recovery, the half-time of blood lactate removal (t1/2) was determined. Time of high-intensity exercise and the lactate concentration obtained in the 1(st) min of recovery were not different between running and swimming. Passive recovery (PR) following running (R-PR=25.5+/-4.3 min) showed a t1/2 significantly higher than PR after swimming (S-PR=18.6+/-4.3 min). The t1/2 of the sequences running-running (R-R=13.0 min), running-swimming (R-S=12.9+/-3.8 min), swimming-swimming (S-S=13.2+/-2.8 min), and swimming-running (S-R=12.9+/-3.8 min) were significantly lower than the t1/2 of the R-PR and S-PR. There was no difference between the t1/2 of the sequences R-R R-S, and S-S. on the other hand the sequence S-R showed a t1/2 significantly lower than the sequences S-S and R-R. It was concluded that the two forms of active recovery determine an increase in the blood lactate removal, regardless of the mode of high-intensity exercise performed previously. Active recovery performed by the muscle groups that were not previously fatigued, can improve the blood lactate removal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min(-1)) on MLSS and the exercise workload at MLSS (MLSSworkload) during cycling. Nine recreationally active males (20.9 +/- 2.9 years, 73.9 +/- 6.5 kg, 1.79 +/- 0.09 m) performed an incremental maximal load test (50 and 100 rev min(-1)) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min(-1)) on a mechanically braked cycle ergometer to determine MLSSworkload and MLSS. MLSSworkload was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSSintensity) was defined as the ratio between MLSSworkload and PW. MLSSworkload (186.1 +/- 21.2 W vs. 148.2 +/- 15.5 W) and MLSSintensity (70.5 +/- 5.7% vs. 61.4 +/- 5.1%) were significantly higher during cycling at 50 rev min(-1) than at 100 rev min(-1), respectively. However, there was no significant difference in MLSS between 50 rev min(-1) (4.8 +/- 1.6 mM) and 100 rev min(-1) (4.7 +/- 0.8 mM). We conclude that MLSSworkload and MLSSintensity are dependent on pedal cadence (50 vs. 100 rev min(-1)) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few studies dealing with effort intensity during swimming exercise in rats have been reported in the literature. Recently, with the use of the lactate minimum test (LMT), our group estimated the minimum blood lactate (MBL) of rats during swimming exercises. This information allowed accurate evaluation of the effort intensity developed by rats during swimming exercise. The present study was designed to evaluate the effects of swimming exercise sessions in below, equivalent and above intensities to MBL, on protein metabolism of rats. Adult (90 days) sedentary male Wistar rats were used in the present study. Mean values of MBL, in the present study, were obtained at blood concentration of 6.7 +/- 0.4 mmol/L with a load of 5% bw. The animals were sacrificed at rest (R) or immediately after a single swimming session (30 min) supporting loads below (3.5% bw), equivalent (5.0% bw) and high load (6.5% bw) to AT. Blood samples were collected each 5 min of exercise for lactate determination. Soleus muscle protein synthesis (amount of L-[C-14] fenil alanyn incorporation to protein) and breakdown (tyrosin release) rates were evaluated. Blood lactate concentrations (mmol/L) stabilized with the below (5.4 +/- 0.01) and equivalent (6.4 +/- 0.006) to MBL but increased, progressively, with the high load. There were no differences in protein synthesis (pmol/mg.h) among rest values (65.2 +/- 3.4) and after-exercise supporting the loads below (61.5 +/- 1.3) and the equivalent (60.7+/-1.7) to MBL but there was a decrease with the high load (36.6+/-2.0). Protein breakdown rates (pmol/g.h) increase after exercise supporting the loads below (227.0 +/- 6.1), equivalent (227.9 +/- 6.0) and high (363.6 +/- 7.1) to MBL in relation to the rest (214.3 +/- 6.0). The results indicate the viability of the application of LMT in studies with rats since it detected alterations imposed by exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to analyze the effects of exercise mode on the validity of onset of blood lactate accumulation (OBLA-3.5-mM fixed blood lactate concentration) to predict the work-rate at maximal lactate steady state (MLSSwork-rate). Eleven recreationally active mates (21.3 +/- 2.9 years, 72.8 +/- 6.7 kg, 1.78 +/- 0.1 m) performed randomly incremental tests to determine OBLA (stage duration of 3 min), and 2 to 4 constants work-rate exercise tests to directly determine maximal lactate steady state parameters on a cycle-ergometer and treadmill. For both exercise modes, the OBLA was significantly correlated to MLSSwork-rate, (cycling: r = 0.81 p = 0.002; running: r = 0.94, p < 0.001). OBLA (156.2 +/- 41.3 W) was lower than MLSSwork-rate (179.6 +/- 26.4 W) during cycling exercise (p = 0.007). However, for running exercise, there was no difference between OBLA (3.2 +/- 0.6 m s(-1)) and MLSSwork-rate (3.1 +/- 0.4 m s(-1)). The difference between OBLA and MLSSworkrate on the cycle-ergometer (r = 0.86; p < 0.001) and treadmill (r = 0.64; p = 0.048) was significantly related to the specific MLSS. We can conclude that the validity of OBLA on predicting MLSSwork-rate is dependent on exercise mode and that its disagreement is related to individual variations in MLSS. (C) 2007 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determinou-se, em eqüinos, o efeito do treinamento sobre as concentrações sangüíneas de lactato e plasmáticas de glicose durante exercício de intensidade progressiva em esteira rolante. Demonstrou-se que o treinamento aeróbico causou diminuição da concentração máxima de lactato e que o limiar de lactato corresponde ao ponto de inflexão da curva de glicose plasmática, confirmando esse parâmetro como indicador da capacidade aeróbica de cavalos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximal lactate steady state (MLSS) is the highest blood lactate concentration that can be identified as maintaining a steady state during a prolonged submaximal constant workload. The objective of the present study was to analyze the influence of the aerobic capacity on the validity of anaerobic threshold (AT) to estimate the exercise intensity at MLSS (MLSS intensity) during cycling. Ten untrained males (UC) and 9 male endurance cyclists (EC) matched for age, weight and height performed one incremental maximal load test to determine AT and two to four 30-min constant submaximal load tests on a mechanically braked cycle ergometer to determine MLSS and MLSS intensity. AT was determined as the intensity corresponding to 3.5 mM blood lactate. MLSS intensity was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. MLSS intensity (EC = 282.1 ± 23.8 W; UC = 180.2 ± 24.5 W) and AT (EC = 274.8 ± 24.9 W; UC = 187.2 ± 28.0 W) were significantly higher in trained group. However, there was no significant difference in MLSS between EC (5.0 ± 1.2 mM) and UC (4.9 ± 1.7 mM). The MLSS intensity and AT were not different and significantly correlated in both groups (EC: r = 0.77; UC: r = 0.81). We conclude that MLSS and the validity of AT to estimate MLSS intensity during cycling, analyzed in a cross-sectional design (trained x sedentary), do not depend on the aerobic capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: O objetivo deste estudo foi analisar os efeitos da corrida contínua prolongada realizada na intensidade correspondente ao início do acúmulo do lactato no sangue (OBLA) sobre o torque máximo dos extensores do joelho analisado em diferentes tipos de contração e velocidade de movimento em indivíduos ativos. MÉTODO: Oito indivíduos do gênero masculino (23,4 ± 2,1 anos; 75,8 ± 8,7 kg; 171,1 ± 4,5 cm) participaram deste estudo. Primeiramente, os sujeitos realizaram um teste incremental até a exaustão voluntária para determinar a velocidade correspondente ao OBLA. Posteriormente, os sujeitos retornaram ao laboratório em duas ocasiões, separadas por pelo menos sete dias, para realizar 5 contrações isocinéticas máximas para os extensores do joelho em duas velocidades angulares (60 e 180º.s-1) sob as condições excêntrica (PTE) e concêntrica (PTC). Uma sessão foi realizada após um período de aquecimento padronizado (5 min a 50%VO2max). A outra sessão foi realizada após uma corrida contínua no OBLA até a exaustão voluntária. Essas sessões foram executadas em ordem randômica. RESULTADOS: Houve redução significante do PTC somente a 60º.s-1 (259,0 ± 46,4 e 244,0 ± 41,4 N.m). Entretanto, a redução do PTE foi significante a 60º.s-1 (337,3 ± 43,2 e 321,7 ± 60,0 N.m) e 180º.s-1 (346,1 ± 38,0 e 319,7 ± 43,6 N.m). As reduções relativas da força após o exercício de corrida foram significantemente diferentes entre os tipos de contração somente a 180º.s-1. CONCLUSÃO: Podemos concluir que, em indivíduos ativos, a redução no torque máximo após uma corrida contínua prolongada no OBLA pode ser dependente do tipo de contração e da velocidade angular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to verify the effect of the passive recovery time following a supramaximal sprint exercise and the incremental exercise test on the lactate minimum speed (LMS). Thirteen sprinters and 12 endurance runners performed the following tests: 1) a maximal 500 m sprint followed by a passive recovery to determine the time to reach the peak blood lactate concentration; 2) after the maximal 500 m sprint, the athletes rested eight mins, and then performed 6 x 800 m incremental test, in order to determine the speed corresponding to the lower blood lactate concentration (LMS1) and; 3) identical procedures of the LMS1, differing only in the passive rest time, that was performed in accordance with the time to peak lactate (LMS2). The time (min) to reach the peak blood lactate concentration was significantly higher in the sprinters (12.76+/-2.83) than in the endurance runners (10.25+/-3.01). There was no significant difference between LMS1 and LMS2, for both endurance (285.7+/-19.9; 283.9+/-17.8 m/min; r= 0.96) and sprint runners (238.0+/-14.1; 239.4+/-13.9 m/min; r= 0.93), respectively. We can conclude that the LMS is not influenced by a passive recovery period longer than eight mins (adjusted according with the time to peak blood lactate), although blood lactate concentration may differ at this speed. The predominant type of training (aerobic or anaerobic) of the athletes does not seem to influence the phenomenon previously described.