145 resultados para blend
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Special diets are used to mitigate many human diseases. When these diets require changes in carbohydrate content, then sweetness becomes an important characteristic. The range of low-calorie sweeteners available to the food industry is expanding. It is essential to have an exact knowledge of the relative sweetness of various sweeteners in relation to different sucrose concentrations. The objective of this study was to determine the variation on the relative sweetness of aspartame (APM), stevia [Stevia rebaudiana (Bert.) Bertoni] leaf extract (SrB) and the mixture cyclamate/saccharin - two parts of cyclamate and one part of saccharin - (C/S) with the increase in their concentrations, and in neutral and acid pH in equi-sweet concentration to 10% sucrose, using magnitude estimation. Sweetness equivalence of SrB in relation to sucrose concentrations of 20% or higher and of APM and C/S to sucrose concentrations of 40% or higher could not be determined, because a bitter taste predominated. The potency of all sweeteners decreased as the level of sweetner increased. In equi-sweet concentration of sucrose at 10%, with pH 7.0 and pH 3.0, the potency was practically the same for all sweeteners evaluated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thin films of blend made up of castor oil-based polyurethane (PU) and polyaniline (PANI) were obtained by casting. The molecular mobility was studied using dielectric spectroscopy and thermally stimulated depolarization current (TSDC) for blends with two different compositions (90/10, 80/20) and the results were compared with PU pure. The peak located around -60 degrees C in TSDC thermograms of PU/PANI blend has dipolar behavior and might be attributed to the change in the molecular chain due to the interaction between isocyanate and the solvent. Vogel-Fulcher Tammann fits was performed on the observed relaxation and the result shows a alpha-relaxation-like. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
Blends of synthetic and biodegradable polymers can be important in attaining material plastic degradation in the environment. Biodegradation using soil and chorume (liquid waste from landfill) microorganisms is a promising area these days. This paper intends to study the PVC/PCL blend degradation in soil using aerobic biodegradation (Bartha respirometer). The morphology and structural changes of the blends were studied by FTIR, scanning electron microscopy, differential scanning calorimetry and contact angle measurements. Blend films prepared by the casting of dichloroethane solutions were buried in a Bartha respirometer containing soil and soil plus chorume and kept there for 120 days. During this time CO2 evolution was measured from time to time. The results showed that PCL films degrade faster than PVC/PCL and PVC films.
Resumo:
Films of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(propylene) (PP), PP/PHBV (4:1), blends were prepared by melt-pressing and investigated with respect to their microbial degradation in soil after 120 days. Biodegradation of the films was evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The biodegradation and/or bioerosion of the PP/PHBV blend was attributed to microbiological attack, with major changes occurring at the interphases of the homopolymers. The PHBV film was more strongly biodegraded in soil, decomposing completely in 30 days, while PP film presented changes in amorphous and interface phase, which affected the morphology.
Resumo:
Poly(hydroxybutyrate-co-valerate) (PHBV) and poly(epsilon-caprolactone) (PCL) PCL/PHBV (4:1) blend films were prepared by melt-pressing. The biodegradation of the films in response to burial in soil for 30 days was investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG). The PHBV film was the most susceptible to microbial attack, since it was rapidly biodegraded via surface erosion in 15 days and completely degraded in 30 days. The PCL film also degraded but more slowly than PHBV. The degradation of the PCL/PHBV blend occurred in the PHBV phase, inducing changes in the PCL phases (interphase) and resulting in an increase of its crystalline fraction.
Resumo:
The photodegradation of a 1:1 w/w blend of polycaprolactone and poly(vinyl chloride) has been studied by following carbon dioxide emission during UV exposure. Similar measurements were performed for polycaprolactone and poly(vinyl chloride) homopolymers which were prepared and irradiated in the same way. It was found that the blend gave lower CO2 emission than either of the two homopolymers, indicating that the interaction of the two components in the blend provided a beneficial reduction of photodegradation. It is therefore deduced that the detailed morphological characteristics of the blend have a controlling influence over the photo-oxidation. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the microbial action in soil on poly(L-lactic acid) (PLLA) and polyvinyl chloride (PVC) films and a PLLA/PVC 7 : 3 blend, using Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). The films (50 mu m) were obtained from the evaporation of dichloromethane solutions and buried in soil columns, in controlled conditions, for 120 days. The results showed that the surface of the PLLA films and blend became 18 and 31% more hydrophilic, respectively. The morphology of the films also changed after 120 days of microbial treatment, particularly that of the PLLA phase in the blend, confirmed by structural and conformational changes in the FTIR CO region at 12001000 cm1 and an increase in the relative intensity of the band at 1773 cm1, which was attributed to C O group vibration due to a rotational isomer in the interlamellar region (semi-ordered region). Besides the biotreated PVC presented changes in the C-Cl band at 738 cm1, due to the presence of some PVC conformational isomer. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Preparation and characterization of castor oil-based polyurethane/poly(o- methoxyaniline) blend film
Resumo:
Blends made up of castor oil-based polyurethane (PU) and poly(o-methoxyaniline) (POMA) were obtained in the form of films by casting and characterized by FTIR, UV-Vis-NIR spectroscopy, and electrical conductivity measurements. Doping was carried out by immersing the films in 1.0M HCl aqueous solution. Chemical bonds between NCO group of PU and NH group of POMA were observed by means of FTIR spectra. The UV-Vis-NIR spectra indicated that the presence of the PU in the blend does not affect doping and formation of the POMA phase. The electrical conductivity research was in the range of 10-3 S/cm. © 2007 Wiley Periodicals, Inc.