6 resultados para biotic variation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Intraspecific variation in seed size is common in wild plant populations and has important consequences for the reproductive success of individual plants. Multiple, often conflicting evolutionary forces mediated by biotic as well as abiotic agents may maintain such a variation. In this paper we assessed seed size variation in a population of the threatened, commercially important palm Euterpe edulis in southeast Brazil. We investigated (i) how this variation affects the probability of attack by vertebrate and invertebrate post-dispersal seed predators, and (ii) if seed size influences the outcome of seeds damaged by beetles in terms of seed germination and early survival of seedlings. Euterpe edulis seeds varied in diameter from 8.3 to 14.1 mm. Neither insects nor rodents selected the seeds they preyed upon based on seed size. Seed germination and total, shoot and root biomasses of one-year seedlings were significantly and positively affected by seed size. Root biomass and seedling survival were negatively affected by seed damage caused by a scolytid beetle (Coccotrypes palmarum) whose adults bore into seeds to consume part of the endosperm, but do not oviposit on them. Seed size had a marginally significant effect on seedling survival. Therefore, if any advantage is accrued by E. edulis individuals producing large seeds, this is because of greater seed germination success and seedling vigor. If this is so, even a relatively narrow range of variation in seed size as observed in the E. edulis population studied may translate into differential success of individual plants. (c) 2006 Elsevier SAS. All rights reserved.
Resumo:
The aggressive behavior of ants that protect plants from herbivores in exchange for rewards such as shelter or food is thought to be an important form of biotic defense against herbivory, particularly in tropical systems. To date, however, no one has compared the defensive responses of different ant taxa associated with the same plant species, and attempted to relate these differences to longer-term efficacy of ant defense. We used experimental cues associated with herbivory-physical damage and extracts of chemical volatiles from leaf tissue-to compare the aggressive responses of two ant species obligately associated with the Amazonian myrmecophyte Tococa bullifera (Melastomataceae). We also conducted a colony removal experiment to quantify the level of resistance from herbivores provided to plants by each ant species. Our experiments demonstrate that some cues eliciting a strong response from one ant species elicited no response by the other. For cues that do elicit responses, the magnitude of these responses can vary interspecifically. These patterns were consistent with the level of resistance provided from herbivores to plants. The colony removal experiment showed that both ant species defend plants from herbivores: however, herbivory was higher on plants colonized by the less aggressive ant species. Our results add to the growing body of literature indicating defensive ant responses are stimulated by cues associated with herbivory. However, they also suggest the local and regional variation in the composition of potential partner taxa could influence the ecology and evolution of defensive mutualisms in ways that have previously remained unexplored.
Resumo:
Background: Rust caused by Puccinia psidii Winter has been limiting for the establishment of new Eucalyptus plantations, as well as for resprouting of susceptible genetic materials. Identifying host genes involved in defense responses is important to elucidate resistance mechanisms. Reverse transcription-quantitative PCR is the most common method of mRNA quantitation for gene expression analysis. This method generally employs a reference gene as an internal control to normalize results. A good endogenous control transcript shows minimal variation due to experimental conditions. Findings. We analyzed the expression of 13 genes to identify transcripts with minimal variation in leaves of 60-day-old clonal seedlings of two Eucalyptus clones (rust-resistant and susceptible) subjected to biotic (P. psidii) and abiotic (acibenzolar-S-methyl, ASM) stresses. Conclusions. For tissue samples of clones that did not receive any stimulus, a combination of the eEF2 and EglDH genes was the best control for normalization. When pathogen-inoculated and uninoculated plant samples were compared, eEF2 and UBQ together were more appropriate as normalizers. In ASM-treated and untreated leaves of both clones, transcripts of the CYP and elF4B genes combined were the ones with minimal variation. Finally, when comparing expression in both clones for ASM-treated leaves, P. psidii-inoculated leaves, ASM-treated plus P. psidii-inoculated leaves, and their respective controls, the genes with the most stable expression were EgIDH and UBQ. The chitinase gene, which is highly expressed in studies on plant resistance to phytopathogens, was used to confirm variation in gene expression due to the treatments. © 2010 Laia et al; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)