74 resultados para bioluminescence resonance energy transfer (BRET)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this paper, we investigated the nonlinear vibrations of a Non-ideal (NIS) electromechanical absorber (NEVA), taking into account a modified mathematical model of (MR) Damper. We observed the presence of the Sornmerfeld effect (it is the steady state frequencies of the DC motor, which it will usually increasing as more power (Voltage) is given to it, in a step-by-step fashion. When a resonance condition it is reached, the better part of this energy it is consumed to generate large amplitude vibrations of the foundation, without sensible change of the motor frequency). The obtained results, by using numerical and analytical simulations, were discussed, in details.
Resumo:
In this paper energy transfer in a dissipative mechanical system is analysed. Such system is composed of a linear and a nonlinear oscillator with a nonlinearizable cubic stiffness. Depending on initial conditions, we find energy transfer either from linear to nonlinear oscillator (energy pumping) or from nonlinear to linear. Such results are valid for two different potentials. However, under resonance and absence of external excitation, if the mass of the nonlinear oscillator is adequately small then the linear oscillator always loses energy. Our approach uses rigorous Regular Perturbation Theory. Besides, we have included the case of two linear oscillators under linear or cubic interactions. Comparisons with the earlier case are made. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We report the infrared-to-visible frequency upconversion in Er3+-Yb3+-codoped PbO-GeO2 glass containing silver nanoparticles (NPs). The optical excitation is made with a laser at 980 nm in resonance with the F-2(5/2)-> F-2(7/2) transition of Yb3+ ions. Intense emission bands centered at 525, 550, and 662 nm were observed corresponding to Er3+ transitions. The simultaneous influence of the Yb3+-> Er3+ energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of the whole frequency upconversion spectra.
Resumo:
The efficiency of energy transfer (ET) between Pr3+ ions in a fluoroindate glass is determined. ET rates, WET, were determined for dilute samples and the results show a dependence of WET on the Pr3+ concentration. ET processes which contribute to resonance fluorescence and frequency upconversion emission were studied. The origin of the interaction energy among the Pr3+ ions was determined to be dipole - dipole. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Blue and ultraviolet luminescence in (Pr3+, Gd3+) doped fluoroindate glass is studied for excitation in the red region (≈590 nm). Frequency upconversion (UC) is observed due to energy transfer (ET) among three Pr3+ ions initially excited to the D21 state corresponding to the ET process D21 + D21 + D21 → S01 + H53 + H53. Additionally, UC luminescence from states P 72 6 and I 72 6 of Gd3+ is observed for an excitation wavelength resonant with transitions of the Pr3+ ions. The characterization of the luminescence signals allowed to determine ET rate among the Pr3+ ions and provides evidence of interconfigurational ET between Gd3+ and Pr3+ ions. © 2006 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glass samples with the composition (mol%) 80TeO(2)-10Nb(2)O(5)-5K(2)O-5Li(2)O, stable against crystallization, were prepared containing Yb3+, Tm3+ and Ho3+. The energy transfer and energy back transfer mechanisms in samples containing 5% Yb3+-5% Tm3+ and 5% Yb3+-5% Tm3+-0.5% Ho3+ were estimated by measuring the absorption and fluorescence spectra together with the time dependence of the Yb3+ F-2(5/2) excited state. A good fit for the luminescence time evolution was obtained with the Yokota-Tanimoto's diffusion-limited model. The up-conversion fluorescence was also studied in 5% Yb-5% Tm. 5% Yb-0.5% Ho and 5% Yb-5% Tm-0.5% Ho tellurite glasses under laser excitation at 975 nm. Strong emission was observed from (1)G(4) and F-3(2) Tm3+ energy levels in all samples. The S-5(2) Ho3+ emission was observed only in Yb3+Ho3+ samples being completely quenched in Yb3+/Tm3+/Tm3+ samples. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
A theoretical approach to the energy transfer process that occurs between a ligand and a rare-earth ion in luminescent complexes is presented. A discussion on the energy transfer mechanisms involved and on the associated selection rules is made. Numerical estimates are also presented.
Resumo:
The effect of ytterbium ions upon energy transfer (ET) excited upconversion emission in Nd3+/Pr3+ -codoped PbGeO3-PbF2-CdF2 glass under 810 nm diode laser excitation is investigated. The results revealed that the presence of Yb3+ ions in the Nd3+/Pr3+-doped sample yields a fourfold enhancement in the visible and near infrared upconversion luminescence. The dependence of the upconversion process upon the excitation power, Nd3+, and Yb3+ concentrations is examined. The results indicated that ytterbium plays a major role in the ET upconversion process by bridging the 810nm neodymium excitation to praseodymium ions. The population of the Pr3+ ions P-3(0) emitting level was accomplished through a multi-ion interaction involving ground-state and excited-state absorption of pump photons at 810 nm by the Nd3+ followed by successive ET involving the Nd3+-Yb3+ and Yb3+-Pr3+ pairs. There is also direct ET Nd3+-Pr3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The mechanism of the Yb(3+)-->Er(3+) energy transfer as a function of the donor and the acceptor concentration was investigated in Yb(3+)-Er(3+) codoped fluorozirconate glass. The luminescence decay curves were measured and analyzed by monitoring the Er(3+)((4)I(11/2)) fluorescence induced by the Yb(3+)((2)F(5/2)) excitation. The energy transfer microparameters were determined and used to estimate the Yb-Er transfer rate of an energy transfer process assisted by excitation migration among donors state (diffusion model). The experimental transfer rates were determined from the best fitting of the acceptor luminescence decay obtained using a theoretical approach analog to that one used in the Inokuti-Hirayama model for the donor luminescence decay. The obtained values of transfer parameter gamma [gamma(exp)] were always higher than that predicted by the Inokuti-Hirayama model. Also, the experimental transfer rate, gamma(2)(exp), was observed to be higher than the transfer rate predicted by the migration model. Assuming a random distribution among excited donors at the initial time (t=0) and that a fast excitation migration, which occurs in a very short time (t
Resumo:
Red, green, and blue emission through frequency upconversion and energy-transfer processes in tellurite glasses doped with Tm3+ and Er3+ excited at 1.064 mum is investigated. The Tm3+/Er3+-codoped samples produced intense upconversion emission signals at around 480, 530, 550 and 660 nm. The 480 nm blue emission was originated from the (1)G(4)-->H-3(6) transition of the Tm3+ ions excited by a multiphoton stepwise phonon-assisted excited-state absorption process. The 5 30, 5 50 nm green and 660 mn red upconversion luminescences were identified as originating from the H-2(11/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) --> I-4(15/2) transitions of the Er3+ ions, respectively, populated via efficient cross-relaxation processes and excited-state absorption. White light generation employing a single infrared excitation source is also examined. (C) 2003 Elsevier B.V. (USA). All rights reserved.