2 resultados para binding theory
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Binding energy differences of mirror nuclei for A = 15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. To fully include the effects of the polarization of the nuclear core due to the extra particle or hole, the spatial components of the vector meson fields and the photon are taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existency of the Okamoto-Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations, For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations.
Resumo:
We use relativistic mean field theory, which includes scalar and vector mesons, to calculate the binding energy and charge radii in 125Cs - 139Cs. We then evaluate the nuclear structure corrections to the weak charges for a series of cesium isotopes using different parameters and estimate their uncertainty in the framework of this model.