3 resultados para availability function

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 degrees C. Standard rheograrns using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (n(s)) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests. © 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern protocols to synchronize ovulations for timed artificial insemination and timed embryo transfer that include manipulations in the proestrus period (i.e., between luteolysis and estrus) affect fertility in cattle. Specifically, stimulating pre-ovulatory follicle growth and exposure to estrogens after CL regression increase the proportion of cows pregnant and decrease late embryo mortality. Such effects may be due to both preovulatory actions of estrogens and post-ovulatory actions of progesterone, as concentrations of the later hormone may be changed in response to manipulations conducted during proestrus. In the first portion of this paper we describe strategies used recently to manipulate the proestrus period in protocols for synchronization of ovulation, and to present evidence of their effects on fertility. Manipulations of timing and prominence of sex steroids during the proestrus and early diestrus that affect fertility may act on targets such as the endometrium. This tissue expresses receptors for both estrogens and progesterone and these hormones change endometrial function to support conceptus growth and pregnancy maintenance. However, specific cellular and molecular mechanisms through which fertility is affected via manipulations of the proestrus are poorly understood. In the second portion of this paper we describe a well-defined animal model to study changes in endometrial function induced by manipulations conducted during the proestrus. Such manipulations induced endometrial changes on sex steroid receptors expression, cell proliferation, oxidative metabolism and eicosanoid synthesis in the uterus, but not on glucose transport to uterine lumen. In summary, evidence is accumulating to support a positive role of increasing duration and estrogen availability during the proestrus on fertility to synchronization protocols. Such positive effects may be through changes in endometrial function to stimulate conceptus growth and survival.