10 resultados para aorta pressure
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In 18 dogs, previously anesthetized with sodium pentobarbital for the surgical preparation, catheterism and monitoring, the action of sodium pentobarbital (7.5 mg/kg) and enflurane (1.5 - 2%) in the liver circulation was studied. Measurements of the following parameters were made in four different times, before and 15, 30 and 60 min after the drug administration. By direct determination: hepatic artery flow, portal vein flow, mean pressure of the abdominal aorta, peripheral arterial pressure (mean), pressure in the caudal cava vein, portal pressure; and by indirect determination: total flow, arterial-cava gradient, portal-cava gradient, resistance in the hepatic artery territory, resistance in the territory of the portal vein, and total resistance. Based on the results, it is concluded that in the experiment's conditions: sodium pentobarbital doesn't change significantly the hepatic circulation, and enflurance produces a fall in the total hepatic flow, by reducing the portal flow, without alterations of the hepatic arterial flow. It diminishes the total hepatic resistance by diminishing the arterial resistance without alterations of the portal resistance; it diminishes the arterial-cava gradient in consequence of the reduction of the abdominal aorta pressure and of the portal pressure, but it seems that the caudal cava pressure is not altered. It also occurs a fall in the peripheral mean pressure.
Resumo:
Objective: The present study was performed to investigate the influence of different routes of perfusion on the distribution of the preservation solutions in the lung parenchyma and upper airways. Methods: Pigs were divided into four groups: control (n = 6), pulmonary artery (PA) (n = 6), simultaneous PA + bronchial artery (BA) (n = 8), and retrograde delivery (n = 6). After preparation and cannulation, cardioplegia solution and Euro- Collins solution (ECS) for lung preservation were given simultaneously. After removal of the heart, the double lung bloc was harvested. Following parameters were assessed: total and regional perfusion (dye-labeled microspheres), tissue water content, PA, aorta, left atrial and left ventricular pressures, cardiac output and lung temperature. Results: Our data show that flow of the ECS in lung parenchyma did not reach control values (9.4 ± 1.0 ml/min per g lung wet weight) regardless of the route of delivery (PA 6.3 ± 1.5, PA + BA 4.8 ± 0.9, retrograde 2.7 ± 0.9 ml/min per g lung wet weight). However, flow in the proximal and distal trachea were significantly increased by PA + BA delivery (0.970 ± 0.4, respectively, 0.380 ± 0.2 ml/min per g) in comparison with PA (0.023 ± 0.007, respectively, 0.024 ± 0.070 ml/min per g), retrograde (0.009 ± 0.003, respectively, 0.021 ± 0.006 ml/min per g) and control experiments (0.125 ± 0.0018, respectively, 0.105 ± 0.012 ml/g per min). Similarly the highest flow rates in the right main bronchus were achieved by PA + BA delivery (1.04 ± 0.4 ml/min per g) in comparison with 0.11 ± 0.03 in control, 0.033 ± 0.008 in PA, and 0.019 ± 0.005 ml/min per g in retrograde group. Flows in the left main bronchus were 0.09 ± 0.02 ml/min per g in control, 0.045 ± 0.012 ml/min per g in PA, and 0.027 ± 0.006 ml/min per g in retrograde group. The flow rates were significantly (P = 0.001) increased by PA + BA delivery of the storage solution (0.97 ± 0.3 ml/min per g). Conclusions: Our data show that the distribution of ECS for lung preservation is significantly improved in airway tissues (trachea and bronchi) if a simultaneous PA + BA delivery is used.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation. © 2012 Elsevier B.V.
Resumo:
Perinatal Pb exposure may modulate arterial tone through nitric oxide (NO) and cyclooxygenase products. To investigate this, Wistar dams received 1000 ppm of Pb or sodium acetate (control) in drinking water during pregnancy and lactation. Curves were constructed in phenylephrine-precontracted intact and/or denuded rings of thoracic aortas of weaned (23-day-old) male pups from their responses to N-omega-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor) and ACh in the absence or presence of indomethacin (10(-5)M, cyclooxygenase inhibitor) or L-NAME (3 x 10(-7)M and 3 x 10(-4)M). Blood lead concentration and systolic blood pressure (SBP) were higher in intoxicated than control pups (blood lead mu g/dl: control < 3.0, Pb 58.7 +/- 6.5*; SBP mmHg: control 111.4 +/- 2.3, Pb 135.5 +/- 2.4*). In L-NAME-treated rings maximal responses increased in Pb-exposed rats, and were higher in intact than in denuded aortas (contraction [% of phenylephrine] intact: control 184.3 +/- 23.7, Pb 289.1 +/- 18.3*; denuded: control 125.1 +/- 4.5, Pb 154.8 +/- 13.3*). ACh-induced relaxation in intact aortas from Pb-exposed rats presented rightward shift in L-NAME presence (EC50 x 10(-7)M: control 1.32 [0.33-5.18], Pb 4.88 [3.56-6.69]*) but moved left under indomethacin (EC50 x 10(-7)M: control 8.95 [3.47-23.07], Pb 0.97 [0.38-2.43]*). *p < 0.05 significant relative to the respective control; N = 7-9. Endothelium removal abolished ACh-induced relaxation. Perinatal Pb exposure caused hypertension associated with alterations in the production and/or release of basal and stimulated endothelium-derived relaxing factors-NO and constricting cyclooxygenase products. These findings may help explain the contribution of NO and cyclooxygenase products to the etiology and/or maintenance of Pb-induced hypertension and could ultimately lead to therapeutic advantages in plumbism.
Resumo:
OBJECTIVE: To assess the effect of transient and sustained variations in cardiac load on the values of the end-systolic pressure-diameter relation (ESPDR) of the left ventricle. METHODS: We studied 13 dogs under general anesthesia and autonomic blockade. Variations of cardiac loads were done by elevation of blood pressure by mechanical constriction of the aorta. Two protocols were used in each animal: gradual peaking and decreasing pressure variation, the transient arterial hypertension protocol (TAH), and a quick and 10 min sustained elevation, the sustained arterial hypertension protocol(SAH). Then, we compared the ESDR in these two situations. RESULTS: Acute elevation of arterial pressure, being it transitory or sustained, did not alter the heart frequency and increased similarly the preload and after load. However, they acted differently in end systolic pressure-diameter relation. It was greater in the SAH than TAH protocol, 21.0±7.3mmHg/mm vs. 9.2±1.2mmHg/mm (p<0.05). CONCLUSION: The left ventricular ESPDR values determined during sustained pressure elevations were higher than those found during transient pressure elevations. The time-dependent activation of myocardial contractility associated with the Frank-Starling mechanism is the major factor in inotropic stimulation during sustained elevations of blood pressure, determining an increase in the ESPDR values.
Resumo:
Lead (Pb)-induced hypertension is characterized by an increase in reactive oxygen species (ROS) and a decrease in nitric oxide (NO). In the present study we evaluated the effect of L-arginine (NO precursor), dimercaptosuccinic acid (DMSA, a chelating agent and ROS scavenger), and the association of L-arginine/DMSA on tissue Pb mobilization and blood pressure levels in plumbism. Tissue Pb levels and blood pressure evolution were evaluated in rats exposed to: 1) Pb (750 ppm, in drinking water, for 70 days), 2) Pb plus water for 30 more days, 3) Pb plus DMSA (50 mg kg-1 day-1, po), L-arginine (0.6%, in drinking water), and the combination of L-arginine/DMSA for 30 more days, and 4) their respective matching controls. Pb exposure increased Pb levels in the blood, liver, femur, kidney and aorta. Pb levels in tissues decreased after cessation of Pb administration, except in the aorta. These levels did not reach those observed in nonintoxicated rats. All treatments mobilized Pb from the kidney, femur and liver. Pb mobilization from the aorta was only effective with the L-arginine/DMSA treatment. Blood Pb concentrations in Pb-treated groups were not different from those of the Pb/water group. Pb increased blood pressure starting from the 5th week. L-arginine and DMSA treatments (4th week) and the combination of L-arginine/DMSA (3rd and 4th weeks) decreased blood pressure levels of intoxicated rats. These levels did not reach those of nonintoxicated rats. Treatment with L-arginine/DMSA was more effective than the isolated treatments in mobilizing Pb from tissues and in reducing the blood pressure of intoxicated rats.
Resumo:
Aims The macrophage migration inhibitory factor (MIF) is an intracellular inhibitor of the central nervous system actions of angiotensin II on blood pressure. Considering that angiotensin II actions at the nucleus of the solitary tract are important for the maintenance of hypertension in spontaneously hypertensive rats (SHRs), we tested if increased MIF expression in the nucleus of the solitary tract of SHR alters the baseline high blood pressure in these rats.Methods and resultsEight-week-old SHRs or normotensive rats were microinjected with the vector AAV2-CBA-MIF into the nucleus of the solitary tract, resulting in MIF expression predominantly in neurons. Rats also underwent recordings of the mean arterial blood pressure (MAP) and heart rate (via telemetry devices implanted in the abdominal aorta), cardiac- and baroreflex function. Injections of AAV2-CBA-MIF into the nucleus of the solitary tract of SHRs produced significant decreases in the MAP, ranging from 10 to 20 mmHg, compared with age-matched SHRs that had received identical microinjections of the control vector AAV2-CBA-eGFP. This lowered MAP in SHRs was maintained through the end of the experiment at 31 days, and was associated with an improvement in baroreflex function to values observed in normotensive rats. In contrast to SHRs, similar increased MIF expression in the nucleus of the solitary tract of normotensive rats produced no changes in baseline MAP and baroreflex function.ConclusionThese results indicate that an increased expression of MIF within the nucleus of the solitary tract neurons of SHRs lowers blood pressure and restores baroreflex function. © 2012 Published on behalf of the European Society of Cardiology. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)