130 resultados para angular momentum
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general matter field can be obtained from the invariance of the corresponding action integral under transformations taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.
Resumo:
The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of energy, momentum and angular momentum of the gravitational field arise from the integral form of the constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell. © 2002 The American Physical Society.
Resumo:
A simple model based on, the maximum energy that an athlete can produce in a small time interval is used to describe the high and long jump. Conservation of angular momentum is used to explain why an athlete should, run horizontally to perform a vertical jump. Our results agree with world records. (c) 2005 American Association of Physics Teachers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Three sets of non-singular canonical variables for the rotational motion are analyzed. These sets are useful when the angle between z-axis of a coordinate system fixed in artificial satellite ( here defined by the directions of principal moments of inertia of the satellite) and the rotational angular momentum vector is zero or when the angle between Z-inertial axis and rotational angular momentum vector is zero. The goal of this paper is to compare all these sets and to determine the benefits of their uses. With this objective, the dynamical equations of each set were derived, when mean hamiltonian associate with the gravity gradient torque is included. For the torque-free rotational motion, analytical solutions are computed for symmetrical satellite for each set of variables. When the gravity gradient torque is included, an analytical solution is shown for one of the sets and a numerical solution is obtained for one of the other sets. By this analysis we can conclude that: the dynamical equation for the first set is simple but it has neither clear geometrical nor physical meaning; the other sets have geometrical and physical meaning but their dynamical equations are more complex.
Resumo:
Three dimensional exactly solvable quantum potentials for which an extra term of form 1/r(2) has been added are shown to maintain their functional form which allows the construction of the Hamiltonian hierarchy and the determination of the spectra of eigenvalues and eigenfunctions within the Supersymmetric Quantum Mechanics formalism. For the specific cases of the harmonic oscillator and the Coulomb potentials, known as pseudo-harmonic oscillator and pseudo-Coulomb potentials, it is shown here that the inclusion of the new term corresponds to rescaling the angular momentum and it is responsible for maintaining their exact solvability.
Resumo:
Starting from a phenomenological Hamiltonian originally written in terms of angular momentum operators we derive a new quantum angle-based Hamiltonian that allows for a discussion on the quantum spin tunneling. The study of the applicability of the present approach, carried out in calculations with a soluble quasi-spin model, shows that we are allowed to use our method in the description of physical systems such as the Mn12-acetate molecule, as well as the octanuclear iron cluster, Fe8, in a reliable way. With the present description the interpretation of the spin tunneling is seen to be direct, the spectra and energy barriers of those systems are obtained, and it is shown that they agree with the experimental ones. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
An approach featuring s-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle - angular momentum coherent states must be constructed in an appropriate fashion.
Resumo:
Hulthen's potential admits analytical solutions for its energy eigenvalues and eigenfunctions corresponding to zero orbital angular momentum stales, but its non zero angular momentum states are not equally known. This work presents a vibrational-rotational analy sis of Hulthen's potential using hydrogenic eigenfunction bases, which may be of interest and useful to students of quantum mechanics at different stages.
Resumo:
Z(2)-gradings of Clifford algebras are reviewed and we shall be concerned with an alpha-grading based on the structure of inner automorphisms, which is closely related to the spacetime splitting, if we consider the standard conjugation map automorphism by an arbitrary, but fixed, splitting vector. After briefly sketching the orthogonal and parallel components of products of differential forms, where we introduce the parallel [orthogonal] part as the space [time] component, we provide a detailed exposition of the Dirac operator splitting and we show how the differential operator parallel and orthogonal components are related to the Lie derivative along the splitting vector and the angular momentum splitting bivector. We also introduce multivectorial-induced alpha-gradings and present the Dirac equation in terms of the spacetime splitting, where the Dirac spinor field is shown to be a direct sum of two quaternions. We point out some possible physical applications of the formalism developed.
Resumo:
We examine a nearly extreme macroscopic Reissner-Nordstrom black hole in the context of semiclassical gravity. The absorption rate associated with the quantum tunneling process of scalar particles whereby this black hole can acquire enough angular momentum to violate the weak cosmic-censorship conjecture is shown to be nonzero.
Resumo:
We study and look for similarities between the response rates R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) of a static scalar source with constant proper acceleration a(0) interacting with a massless, conformally coupled Klein-Gordon field (i) in de Sitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the de Sitter cosmological horizon and (ii) in Schwarzschild-de Sitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Lambda is the cosmological constant and M is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of de Sitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-de Sitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) do not coincide in general, but tend to each other when Lambda-->0 or a(0)-->infinity. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
For m(2) < a(2) + q(2), with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr-Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Making use of Wheeler's idea of charge without charge, the topological structure of the extended KN spatial section is found to be highly non-trivial, leading thus to the existence of gravitational states with half-integral angular momentum. This property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4π rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.
Resumo:
The quantized vortex states of a weakly interacting Bose-Einstein condensate of atoms with attractive interatomic interaction in an axially symmetric harmonic oscillator trap are investigated using the numerical solution of the time-dependent Gross-Pitaevskii equation obtained by the semi-implicit Crank-Nicholson method. The collapse of the condensate is studied in the presence of deformed traps with the larger frequency along either the radial or the axial direction. The critical number of atoms for collapse is calculated as a function of the vortex quantum number L. The critical number increases with increasing angular momentum L of the cortex state but tends to saturate for large L.