16 resultados para alpha particles
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A stochastic variational method is applied to calculate the binding energies and root-mean-square radii of 2, 3 and 4 alpha particles using an S-wave Ali-Bodmer potential. The results agree with other calculations. We discuss the application of the present method to study the universality in weakly-bound three and four-body systems in the context of ultracold atomic traps.
Resumo:
We study the two-alpha-particle (alpha alpha) system in an Effective Field Theory (EFT) for halo-like systems. We propose a power Counting that incorporates the subtle interplay of strong and electromagnetic forces leading to a narrow resonance at an energy of about 0.1 MeV. We investigate the EFT expansion in detail, and compare its results with existing low-energy aa phase shifts and previously determined effective-range parameters. Good description of the data is obtained with a surprising amount of fine-tuning. This scenario can be viewed as an expansion around the limit where, when electromagnetic interactions are turned off, the (8)Be ground state is at threshold and exhibits conformal invariance. We also discuss possible extensions to systems with more than two alpha particles. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new approach based on a N-a cluster photoabsorption model is proposed for the understanding of the puzzling steady increase behavior of the 90Zr (e, α) yield measured at the National Bureau of Standards (NBS) within the Giant Dipole Resonance and quasideuteron energy range. The calculation takes into account the pre-equilibrium emissions of protons, neutrons and alpha particles in the framework of an extended version of the multicollisional intranuclear cascade model (MCMC). Another Monte Carlo based algorithm describes the statistical decay of the compound nucleus in terms of the competition between particle evaporation (p, n, d, α, 3He and t) and nuclear fission. The results reproduce quite successfully the 90Zr (e,α) yield, suggesting that emissions of a particles are essential for the interpretation of the exotic increase of the cross sections.
Resumo:
Characterization by micro-Raman spectroscopy of polymeric materials used as nuclear track detectors reveals physico-chemical and morphological information on the material's molecular structure. In this work, the nuclear track detector poly(allyl diglycol carbonate), or Columbia Resin 39 (CR-39), was characterized according to the fluence of alpha particles produced by a 226Ra source and chemical etching time. Therefore, damage of the CR-39 chemical structure due to the alpha-particle interaction with the detector was analyzed at the molecular level. It was observed that the ionization and molecular excitation of the CR-39 after the irradiation process entail cleavage of chemical bonds and formation of latent track. In addition, after the chemical etching, there is also loss of polymer structure, leading to the decrease of the group density C-O-C (∼888 cm-1), CH=CH (∼960 cm -1), C-O (∼1110 cm-1), C-O-C (∼1240 cm -1), C-O (∼1290 cm-1), C-O (∼1741 cm -1), -CH2- (∼2910 cm-1), and the main band -CH2- (∼2950 cm-1). The analyses performed after irradiation and chemical etching led to a better understanding of the CR-39 molecular structure and better comprehension of the process of the formation of the track, which is related to chemical etching kinetics. Copyright © 2013 Society for Applied Spectroscopy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The goal of this project is the reproduction, through the simulation code based on the MCNPX (Monte Carlo N-Particle eXtended) v2.50 method, of the proton beam interaction with the material, since, in proton therapy, only the particle ionization and excitation are analyzed and the occurence of nuclear interactive inelastic process are not considered. This work will help the development of studies concerning the contribution to the total dosis of secondary particles generated by nuclear interaction in proton therapy. They are: alpha particles ( ), deuterium(2H), tritium (3H), neutron (n) and helium (3He). A MS20 tissue substitute phantom was used as the target and the energy of the proton beams was within an interest range of 100 to 200MeV. With the results obtained, it was possible to generate graphics which allows the analysis of the dosis deposition relation with and without nuclear interaction, the percentage of secondary particles deposited dosis, the radial dispersion of neutrons in the material, the secondary particles multiplicity, as well as the relation between the secondary particles spectrum with the próton generated spectrum
Resumo:
Cosmic radiation has been identi ed as one of the main hazard to crew, aircraft and sensitive equipments involved in long-term missions and even high-altitude commercial ights. Generally, shields are used in spatial units to avoid excessive exposure, by holding the incident radiation. Unfortunatelly, shielding in space is problematic, especially when high-energy cosmic particles are considered, due to the production of large number of secondary particles, mainly neutrons, protons and alpha particles, caused by spallation reactions and quasi-elastic processes of the corpuscular radiation with the shield. Good parameters for checking the secondary particle production at target material are diferential cross section and energy deposited in the shield. Addition experiments, some computer codes based on Monte Carlo method show themselves a suitable tool to calculate shield parameters, due to have evaluated nuclear data libraries implemented on the algorithm. In view of this, the aim of this work is determining the parameters evaluated in shielding materials, by using MCNPX code, who shows good agreement with experimental data from literature. Among the materials, Aluminium had lower emission and production of secondary particles
Resumo:
A collective Hamiltonian for a two alpha particles aggregate, which describes the 8Be nucleus, encompassing a collective potential and an inertia function of that system, is obtained and analyzed through the use of a technique - derived from an approach of the generator coordinate method (GCM) - which allows for the extraction of collective information. The nucleon-nucleon interaction considered here is the one proposed by Volkov plus the Coulomb repulsion. It is shown that nonlocal effects appear in those collective functions describing the spontaneously occurring breakup process. Furthermore, the result for the inertia function stands for a microscopically generated evidence supporting a double-folding-based model of the real part of the nucleus-nucleus nonlocal interaction recently proposed.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Magnetic properties of acicular (similar to60 and similar to200 nm) iron particles, obtained by reduction of alumina-coated goethite particles, are reported. X-ray diffraction and Mossbauer spectroscopy showed that the particles consist of a alpha-Fe core and a thin surface layer of maghemite. Magnetization data indicated an improvement of similar to28% in the saturation magnetization, coercive field, and squareness for particles with similar to60 nm. This magnetic property enhancement of the present particles, whose size is 40% smaller than those commercially available, could result in a similar decrease of the bit-size for higher density of magnetic media.
Resumo:
Uniform metal iron ellipsoidal particles of around 200 nm in length were obtained by reduction and passivation of alumina-coated alpha-Fe2O3 (hematite) particles under different conditions of temperature and hydrogen flow rate. The monodispersed hematite particles were prepared by the controlled hydrolysis of ferric sulfate and further coated with a homogeneous thin layer of Al2O3 by careful selection of the experimental conditions, mainly pH and aluminum salt concentration. The reduction mechanism of alpha-Fe2O3 into alpha-Fe was followed by x-ray and electron diffraction, and also by the measurements of the irreversible magnetic susceptibility. The transformation was found to be topotactic with the [001] direction of hematite particles, which lies along the long axis of the particles, becoming the [111] direction of magnetite and finally the [111] direction of metal iron. Temperature and hydrogen flow rate during the reduction have been found to be important parameters, which determine not only the degree of reduction but also the crystallite size of the final particles. Magnetic characterization of the samples shows that the only parameters affected by the crystallite size are the saturation magnetization and magnetic time-dependence effect, i.e., activation volume. (C) 2002 American Institute of Physics.
Resumo:
MoO3 is a lamellar material with applications in different areas, as solid lubricants, catalysis, solar cells, etc. In the present work, MoO3 powders, synthesized by the polymeric precursor method, were doped with nickel or cobalt. The powder precursors were characterized by TG/DTA. After calcination between 500 and 700 degrees C, the samples were characterized by X-ray diffraction, infrared and Raman spectroscopy and scanning electron microscopy. beta-MoO3 was obtained after calcination at low temperatures. With the temperature increase, alpha-MoO3 is observed, with a preferential growth of the (0 2k 0) planes, when the material is doped and calcined at 700 degrees C. Doping with nickel increases five times the preferential growth. As a consequence, plate-like particles are observed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)