245 resultados para alpha 1 adrenergic receptor stimulating agent
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The rat tail artery has been used for the study of vasoconstriction mediated by alpha(1A)-adrenoceptors (ARs). However, rings from proximal segments of the tail artery (within the initial 4 cm, PRTA) were at least 3- fold more sensitive to methoxamine and phenylephrine (n = 6 - 12; p < 0.05) than rings from distal parts (between the sixth and 10th cm, DRTA). Interestingly, the imidazolines N-[ 5-( 4,5- dihydro- 1H- imidazol-2-yl)-2-hydroxy-5,6,7,8- tetrahydronaphthalen- 1- yl] methanesulfonamide hydrobromide (A-61603) and oxymetazoline, which activate selectively alpha(1A)- ARs, were equipotent in PRTA and DRTA (n = 4 - 12), whereas buspirone, which activates selectively alpha(1D)-AR, was approximate to 70-fold more potent in PRTA than in DRTA (n = 8; p < 0.05). The selective alpha(1D)-AR antagonist 8-[2-[4-(methoxyphenyl)-1-piperazinyl] ethyl]-8-azaspiro[4.5] decane-7,9-dione dihydrochloride (BMY- 7378) was approximate to 70- fold more potent against the contractions induced by phenylephrine in PRTA (pK(B) of approximate to 8.45; n = 6) than in DRTA (pK B of approximate to 6.58; n = 6), although the antagonism was complex in PRTA. 5-Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximate to 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 ( n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)-ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities. antagonism was complex in PRTA. 5- Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximate to 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 ( n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)- ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities.
Resumo:
The biological effects of catecholamines in mammalian pigment cells are poorly understood. Our previous results showed the presence of α1-adrenoceptors in SK-Mel 23 human melanoma cells. The aims of this work were to (1) characterize catecholamine effects on proliferation, tyrosinase activity and expression, (2) identify the α1- adrenoceptor subtypes, and (3) verify whether chronic norepinephrine (NE) treatment modified the types and/or pharmacological characteristics of adrenoceptors present in SK-Mel 23 human melanoma cells. Cells treated with the aradrenergic agonist, phenylephrine (PHE, 10-5 or 10-4 M), for 24-72 h, exhibited decreased cell proliferation and enhanced tyrosinase activity, but unaltered tyrosinase expression as compared with the control. The proliferation and tyrosinase activity responses were inhibited by the α1-adrenergic antagonist prazosin, suggesting they were evoked by α1-adrenoceptors. The presence of actinomycin D, a transcription inhibitor, did not diminish PHE-induced effects. RT-PCR assays, followed by cloning and sequencing, demonstrated the presence of α1A- and α1B-adrenoceptor subtypes. NE-treated cells (24 or 72 h) were used in competition assays, and showed no significant change in the competition curves of α1-adrenoceptors as compared with control curves. Other adrenoceptor subtypes were not identified in these cells, and NE pretreatment did not induce their expression. In conclusion, the activation of SK-Mel 23 human melanoma α1- radrenoceptors elicit biological effects, such as proliferation decrease and tyrosinase activity increase. Desensitization or expression of other adrenoceptor subtypes after chronic NE treatment were not observed.
Resumo:
In the present study, we investigated the effect of phenylephrine and clonidine (α1- and α2-adrenoceptor agonists, respectively) injected into the lateral preoptic area (LPOA) on the water intake induced by water deprivation in rats. In addition, the effects of prior injections of prazosin and yohimbine (α1- and α2-adrenoceptor antagonists, respectively) into the LPOA on the antidipsogenic action of phenylephrine and clonidine were investigated. After 30 h of water deprivation, the water intake of rats in a control experiment (saline injection) was 10.5 ± 0.8 ml/h. Injection of clonidine (5, 10, 20, and 40 nmol) into the LPOA reduced water intake to 6.3 ± 0.9, 4.9 ± 0.8, 3.6 ± 1.0, and 2.2 ± 0.7 ml/h, respectively. Similar reductions occurred after injection of 80 and 160 nmol phenylephrine into the LPOA (6.2 ± 1.6 and 4.8 ± 1.3 ml/h, respectively). Pretreatment with prazosin (40 nmol) abolished the antidipsogenic action of an 80-nmol dose of phenylephrine (11.3 ± 1.1 ml/h) and reduced the effect of a 20-nmol dose of clonidine (7.4 ± 1.4 ml/h). Yohimbine (20, 40, and 80 nmol), previously injected, produced no significant changes in the effects of either phenylephrine or clonidine. The present results show that phenylephrine and clonidine injected into the LPOA induce an antidipsogenic effect in water-deprived rat. They also suggest an involvement of α1-adrenoceptors in this effect. A possible participation of imidazole receptors in the effect of clonidine should also be taken into account. © 1993.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We previously reported that truncation of the N-terminal 79 amino acids of alpha(1D)-adrenoceptors (Delta(1-79)alpha(1D)-ARs) greatly increases binding site density. In this study, we determined whether this effect was associated with changes in alpha(1D)-AR subcellular localization. Confocal imaging of green fluorescent protein (GFP)-tagged receptors and sucrose density gradient fractionation suggested that full-length alpha(1D)-ARs were found primarily in intracellular compartments, whereas Delta(1-79)alpha(1D)-ARs were translocated to the plasma membrane. This resulted in a 3- to 4-fold increase in intrinsic activity for stimulation of inositol phosphate formation by norepinephrine. We determined whether this effect was transplantable by creating N-terminal chimeras of alpha(1)-ARs containing the body of one subtype and the N terminus of another (alpha(1A) NT-D, alpha(1B) NT-D, alpha(1D) NT-A, and alpha(1D)NT-B). When expressed in human embryonic kidney 293 cells, radioligand binding revealed that binding densities of alpha(1A)- or alpha(1B)-ARs containing the alpha(1D)-N terminus decreased by 86 to 93%, whereas substitution of alpha(1A)- or alpha(1B)-N termini increased alpha(1D)-AR binding site density by 2- to 3-fold. Confocal microscopy showed that GFP-tagged alpha(1D)NT-B-ARs were found only on the cell surface, whereas GFP-tagged alpha(1B)NT-D-ARs were completely intracellular. Radioligand binding and confocal imaging of GFP-tagged alpha(1D)- and Delta(1-79)alpha(1D)-ARs expressed in rat aortic smooth muscle cells produced similar results, suggesting these effects are generalizable to cell types that endogenously express alpha(1D)-ARs. These findings demonstrate that the N-terminal region of alpha(1D)-ARs contain a transplantable signal that is critical for regulating formation of functional bindings, through regulating cellular localization.
Resumo:
Salivation induced by intraperitoneal (i.p.) injections of pilocarpine (cholinergic agonist) is reduced by intracerebroventricular (i.c.v.) injections of moxonidine (alpha(2) adrenergic and imidazoline receptor agonist). In the present study, we investigated the involvement of central alpha(2) adrenergic receptors in the inhibitory effect of i.c.v. moxonidine on i.p. pilocarpine-induced salivation. Male Holtzman rats with stainless steel cannula implanted into the lateral ventricle (LV) were used. Saliva was collected using pre-weighted small cotton balls inserted into the animal's mouth under ketamine (100 mg kg(-1)) anesthesia. Salivation was induced by i.p. injection of pilocarpine (4 mu mol kg(-1)). Pilocarpine-induced salivation was reduced by i.c.v. injection of moxonidine (10 nmol) and enhanced by i.c.v. injections of either RX 821002 (160 nmol) or yohimbine (320 nmol). The inhibitory effect of i.c.v. moxonidine on pilocarpine-induced salivation was abolished by prior i.c.v. injections of the alpha(2) adrenergic receptor antagonists, RX 821002 (160 nmol) or yohimbine (160 and 320 nmol). The alpha(1) adrenergic receptor antagonist prazosin (320 nmol) injected i.c.v. did not change the effect of moxonidine on pilocarpine-induced salivation. The results suggest that moxonidine acts on central alpha(2) adrenergic receptors to inhibit pilocarpine-induced salivation, and that this salivation is tonically inhibited by central alpha(2) adrenergic receptors. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Amitraz, an acaricide used to control ectoparasites in animals has a complex pharmacological activity, including α2-adrenergic agonist action. The purpose of this research was to investigate the possible antinociceptive and/or sedative effect of amitraz in horses. The sedative effect of the intravenous (i.v.) injection of dimethylformamide (DMF, 5 mL, control) or amitraz (0.05, 0.10, 0.15 mg/kg), was investigated on the head ptosis test. The participation of α2-adrenergic receptors in the sedative effect provoked by amitraz was studied by dosing yohimbine (0.12 mg/kg, i.v.). To measure the antinociception, xylazine hydrochloride (1 mg/kg, i.v., positive control) and the same doses of amitraz and DMF were used. A focused radiant light/heat directed onto the fetlock and withers of a horse were used as a noxious stimulus to measure the hoof withdrawal reflex latency (HWRL) and the skin twitch reflex latency (STRL). The three doses of amitraz used (0.05, 0.10 and 0.15 mg/kg) provoked a dose-dependent relaxation of the cervical muscles. The experiments with amitraz and xylazine on the HWRL showed that after i.v. administration of all doses of amitraz there was a significant increase of HWRL up to 150 min after the injections. Additionally, there was a significant difference between control (DMF) and positive control (xylazine) values up to 30 min after drug injection. On the other hand, the experiments on the STRL show that after administration of amitraz at the dose of 0.15 mg/kg, a significant increase in STRL was observed when compared with the control group. This effect lasted up to 120 min after injection. However, no significant antinociceptive effect was observed with the 0.05 and 0.10 mg/kg doses of amitraz or at the 1.0 mg/kg dose of xylazine.
Resumo:
The use of molecular markers may auxiliary the buffalo breeding. The oxytocin (OXT) and the adrenergic receptor alpha(1A) (ADRA1A) may be involved in milk ejection in ruminants. The aim of this study was to verify the existence of polymorphisms in the OXT and ADRA1A genes and their associations with milk production traits. A total of 220 buffaloes were genotyped using PCR-RFLP for both genes. The SNP identified in the ADRA1A gene was associated with protein percentage in dairy buffaloes. This is the first report of such association in the literature, which has not been studied in other species.
Resumo:
To determine whether central α1 and α2-adrenergic mechanisms are involved in urinary sodium and potassium excretion and urine volume induced by angiotensin II (ANGII), these renal parameters were measured in volume-expanded Holtzman rats with cannulas implanted into lateral ventricle (LV) and lateral hypothalamus (LH). The injection of ANGII into LV in rats with volume expansion reduced the sodium, potassium and urine excretion in comparison to the control injections of isotonic saline, whereas prazosin (α1 antagonist) potentiated these effects. Clonidine (α2 agonist) and yohimbine (α2 antagonist) injected into LH previous to injection of ANGII into LV also abolished the inhibitory effect of ANGII. These results suggest that the discharge of central alpha-adrenergic receptors has dual inhibitory and excitatory effect on antinatriuretic, antikaliuretic and antidiuretic effect induced by central ANGII in volume-expanded rats. © 1995.
Resumo:
The cardiovascular, respiratory, and anesthetic effects of medetomidine-ketamine (20 μg/kg bodyweight [BW] and 10 mg/kg BW) (MK group) or dexmedetomidine-ketamine (10 μg/kg BW and 10 mg/kg BW) (DK group) were studied in golden-headed lion tamarins. Heart rate decreased after administration of both combinations; this reduction was statistically greater in the DK group than in the MK group after 15 and 45 minutes. Systolic arterial pressure decreased in a similar way in both groups, except at 15 minutes, when systolic arterial pressure was significantly lower in the DK group. Diastolic arterial pressure, mean arterial pressure, respiratory rate, and rectal temperature were progressively reduced in all groups. Sedation time was significantly shorter and anesthesia time was significantly longer in the DK group compared with MK group. Anesthetic quality and analgesia scores were significantly greater at 5 and 15 minutes in the DK group compared with the MK group. The administration of dexmedetomidine-ketamine is as safe and effective as the administration of medetomidine-ketamine in tamarins.
Resumo:
Resistant hypertension (RH) is characterized by blood pressure above 140 × 90 mm Hg, despite the use, in appropriate doses, of three antihypertensive drug classes, including a diuretic, or the need of four classes to control blood pressure. Resistant hypertension patients are under a greater risk of presenting secondary causes of hypertension and may be benefited by therapeutical approach for this diagnosis. However, the RH is currently little studied, and more knowledge of this clinical condition is necessary. In addition, few studies had evaluated this issue in emergent countries. Therefore, we proposed the analysis of specific causes of RH by using a standardized protocol in Brazilian patients diagnosed in a center for the evaluation and treatment of hypertension. The management of these patients was conducted with the application of a preformulated protocol which aimed at the identification of the causes of resistant hypertension in each patient through management standardization. The data obtained suggest that among patients with resistant hypertension there is a higher prevalence of secondary hypertension, than that observed in general hypertensive ones and a higher prevalence of sleep apnea as well. But there are a predominance of obesity, noncompliance with diet, and frequent use of hypertensive drugs. These latter factors are likely approachable at primary level health care, since that detailed anamneses directed to the causes of resistant hypertension are applied. © 2012 Livia Beatriz Santos Limonta et al.
Resumo:
The effects of sodium and potassium excretion after intrahypothalamic administration of two α-adrenoceptor agonists and the effect of α-adrenoceptor antagonists were studied in groups of rats. Prazosin was equally effective at blocking the natriuretic and kaliuretic responses to the α1-adrenoceptor agonist phenylephrine and the mixed α1/α2-adrenoceptor agonist noradrenaline, while yohimbine which acts preferentially on α2-adrenoceptors was effective in potentiating these responses. These results suggest the presence of two types of α-adrenoceptors for the modulation of ventromedial hypothalamic pathways that interfere with the regulation of the two cations: stimulation of α1-adrenoceptors facilitates, while stimulation of α2-adrenoceptors inhibits the excretion of the ions.
Resumo:
The subfornical organ (SFO) and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANG II) on water and salt regulation. Several anatomical findings have demonstrated neural connections between the SFO and the LH. The present experiments were conducted to investigate the role of the α-adrenergic antagonists and agonists injected into the LH on the water and salt intake elicited by injections of ANG II into the SFO. Prazosin (an α1-adrenergic antagonist) injected into the LH increased the salt ingestion, whereas yohimbine (an α2-adrenergic antagonist) and propranolol (a β-adrenergic antagonist) antagonized the salt ingestion induced by administration of ANG II into the SFO. Previous administration of clonidine (an α2-adrenergic agonist) or noradrenaline into the LH increased, whereas pretreatment with phenylephrine decreased the sodium intake induced by injection of ANG II into the SFO. Previous treatment with prazosin and propranolol reduced the water intake induced by ANG II. Phenylephrine increased the dipsogenic responses produced by ANG II, whereas previous treatment with clonidine injected into the LH reduced the water intake induced by ANG II administration into the SFO. The LH involvement with SFO on the excitatory and inhibitory mechanisms related to water and sodium intake is suggested.
Resumo:
In the present experiments, we investigated a possible involvement of noradrenergic receptors of the lateral hypothalamus (LH) in the water intake and pressor response induced by cholinergic stimulation of the medial septal area (MSA) in rats. The cholinergic agonist carbachol (2 nmol) injected into the MSA induced water intake and pressor response. The injection of an α2-adrenergic agonist, clonidine (20 and 40 nmol), but not of an α1-adrenergic agonist, phenylephrine (80 and 160 nmol), into the LH inhibits the water intake induced by carbachol injected into the MSA. The injection of clonidine or phenylephrine into the LH produced no change in the MAP increase induced by carbachol injected into the MSA. The present results suggest that adrenergic pathways involving the LH are important for the water intake, but not for the pressor response, induced by cholinergic activation of the MSA. © 1994.