4 resultados para allosterism

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured hemoglobin oxygen uptake vs. The partial pressure of oxygen, with independently controlled activities of chloride and water. This control is effected by combining different concentrations of NaCl and sucrose in the bathing solution to achieve: (i) water activities were varied and CI- activity was fixed, (ii) both water and CI- activities were varied with a traditional NaCI titration, or (iii) CI- activities were varied and water activity was fixed by adding compensating sucrose. Within this analysis, the CI--regulated loading of four oxygens can be described by the reaction Hb.CI- + 4 O-2 + 65 H2O reversible arrow Hb.4O(2).65H(2)O + CI-. The dissociation of a neatly integral chloride, rather than the nonintegral 1.6 chlorides inferred earlier from simple salt titration, demonstrates the need to recognize the potentially large contribution from changes in water activity when titrating weakly binding solutes. The single-chloride result might simplify structural considerations of the action of CI- in hemoglobin regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldose-ketose isomerases, but its reaction also accomplishes a simultaneous amination/deamination. The determination of the structure of this protein provides fundamental knowledge for understanding its mode of action and the nature of allosteric conformational changes that regulate its function. Results: The crystal structure of glucosamine 6-phosphate deaminase with bound phosphate ions is presented at 2.1 Å resolution together with the refined structures of the enzyme in complexes with its allosteric activator and with a competitive inhibitor. The protein fold can be described as a modified NAD-binding domain. Conclusions: From the similarities between the three presented structures, it is concluded that these represent the enzymatically active R state conformer. A mechanism for the deaminase reaction is proposed. It comprises steps to open the pyranose ring of the substrate and a sequence of general base-catalyzed reactions to bring about isomerization and deamination, with Asp72 playing a key role as a proton exchanger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T 3) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/ deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, Cterminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T 3, but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T 3 but not NH3.Wepresent data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011). Copyright © 2011 by The Endocrine Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously proposed a role of hydration in the allosteric control of hemoglobin based on the effect of varying concentrations of polyols and polyethers on the human hemoglobin oxygen affinity and on the solution water activity (Colombo, M. F., Rau, D. C., and Parsegian, V. A. (1992) Science 256, 655-659). Here, the original analyses are extended to test the possibility of concomitant solute and water allosteric binding and by introducing the bulk dielectric constant as a variable in our experiments. We present data which indicate that glycine and glucose influence HbA oxygen affinity to the same extent, despite the fact that glycine increases and glucose decreases the bulk dielectric constant of the solution. Furthermore, we derive an equation linking changes in oxygen affinity to changes in differential solute and water binding to test critically the possibility of neutral solute heterotropic binding. Applied to the data, these analyses support our original interpretation that neutral solutes act indirectly on the regulation of allosteric behavior of hemoglobin by varying the chemical potential of water in solution. This leads to a displacement of the equilibrium between Hb conformational states in proportion to their differential hydration.