59 resultados para aerospace and electronic systems
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (I 10), (0 10), (10 1) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For, comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximate to (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This Special Issue presents a selection of papers initially presented at the 11th International Conference on Vibration Problems (ICOVP-2013), held from 9 to 12 September 2013 in Lisbon, Portugal. The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: “Vibration Problems in Vertical Transportation Systems”, “Nonlinear Dynamics, Chaos and Control of Elastic Structures” and “New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control”.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, we introduce the concept of dynamic Morse decomposition for an action of a semigroup of homeomorphisms. Conley has shown in [5, Sec. 7] that the concepts of Morse decomposition and dynamic Morse decompositions are equivalent for flows in metric spaces. Here, we show that a Morse decomposition for an action of a semigroup of homeomorphisms of a compact topological space is a dynamic Morse decomposition. We also define Morse decompositions and dynamic Morse decompositions for control systems on manifolds. Under certain condition, we show that the concept of dynamic Morse decomposition for control system is equivalent to the concept of Morse decomposition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The structural and electronic properties of bulk and both oxidized and reduced SnO2(110) surfaces as well as the adsorption process of O-2 on the reduced surface have been investigated by periodic DFT calculations at B3LYP level. The lattice parameters, charge distribution, density of states and band structure are reported for the bulk and surfaces. Surface relaxation effects have been explicitly taken into account by optimizing slab models of nine and seven atomic layers representing the oxidized and reduced surfaces, respectively. The conductivity behavior of the reduced SnO2(110) surface is explained by a distribution of the electrons in the electronic states in the band gap induced by oxygen vacancies. Three types of adsorption approaches of O-2 on the four-fold tin at the reduced SuO(2)(110) surface have been considered. The most exothermic channel corresponds to the adsorption of O-2 parallel to the surface and to the four-fold tin row, and it is believed to be associated with the formation of a peroxo O-2(2-) species. The chemisorption of O-2 on reduced SnO2(110) surface causes a significant depopulation of states along the band gap and it is shown to trap the electrons in the chemisorbed complex producing an electron-depleted space-charge layer in the inner surface region of the material in agreement with some experimental evidences. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article presents an thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum exergetic manufacturing cost (EMC), based on the Second Law of Thermodynamics. The decision variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as finals conclusions.
Resumo:
In this paper, a thermoeconomic functional analysis method based on the Second Law of Thermodynamics and applied to analyze four cogeneration systems is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely exergetic production cost (EPC), assuming fixed rates of electricity production and process steam in exergy base. In this study a comparison is made between the same four configurations of part I. The cogeneration system consisting of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EPC. (C) 2004 Published by Elsevier Ltd.
Resumo:
Introduction: The aim of this study was to compare the increase of the root canal area after instrumentation with EndoSequence or ProTaper rotary systems. Methods: Twenty-two mesial root canals from mandibular molars were instrumented. Teeth were mounted on a base, numbered, and divided into 2 groups; teeth from 1-11 (PT group) were instrumented by using the ProTaper system, and teeth from 12-22 (ES group) were instrumented by using the EndoSequence system. Cone beam computed tomography was performed on all teeth before and after instrumentation. Measurements at 3,5, and 7 mm as well as differences in instrument performance were statistically compared by the Student t test at 5% significance level. Results: Both systems increased significantly the root canal area (P < .05) at all levels. Comparison between the rotary systems showed significantly greater increase (P < .05) for EndoSequence at 3 mm, with no statistically significant difference (P < .05) at the other levels. Conclusions: Both rotary systems increased significantly the root canal area. (J Endod 2010;36:1179-1182)
Resumo:
The aim of this study was to determine the consequent reproductive developmental and immunotoxic effects due to exposure to fenvalerate during pregnancy and lactation in male offspring of maternal-treated rats. Pregnant rats were treated daily by oral gavage with 40 or 80 mg/kg of fenvalerate or corn oil (vehicle, control), from d 12 of pregnancy to d 21 of lactation. Immune and reproductive developmental effects were assessed in male offspring at postnatal days (PND) 40 (peripuberty), 60 (postpuberty), and 90 (sexual maturity). Treatment with the higher dose (80 mg/kg) resulted in convulsive behavior, hyperexcitability, and mortality in 45% of the dams. Fenvalerate was detected in the fetus due to placental transfer, as well as in pups due to breast-milk ingestion, persisting in male offspring until PND 40 even though pesticide treatment was terminated on PND 20. However, fenvalerate did not produce marked alterations in age of testicular descent to the scrotum and prepucial separation, parameters indicative of puberty initiation. In contrast, at puberty, there was a reduction in testicular weight and sperm production in male offspring of maternal-treated rats. At adulthood, the sperm counts and fertility did not differ between control and treated groups. Testosterone levels were not changed at any time during reproductive development. Similarly, no apparent exposure-related effects were detected in the histological structures of the lymphohematopoietic system. Data indicate that fenvalerate, in this experimental model, interfered with initial development of the male reproductive system, but that these effects on sperm production or fertility did not persist into adulthood. There was no apparent evidence that fenvalerate altered testosterone levels or produced a disruption in male endocrine functions.