18 resultados para adipocyte potential for differentiation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to isolate, culture, and characterize mesenchymal stem cells (MSCs) from horse bone marrow (BM) using the techniques of flow cytometry, immunocytochemistry, cytogenetics, and electron microscopy. Immunophenotypic analysis revealed the presence of MSCs with high expression of the CD90 marker, lower expression of the CD44 marker, and absent expression of the CD34 marker. In assays of differentiation, the positive response to osteogenic (OST), chondrogenic (CDG), and adipogenic (ADP) differentiation signals was observed and characterized by deposition of calcium-rich extracellular matrix (OST), proteoglycans and collagen II (CDG) and intracellular deposition of fat drops (ADP). In immunocytochemical characterization, MSCs were immunopositive for CD44, vimentin, and PCNA, and they were negative for CD13. In the ultrastructural analysis of MSCs, the most outstanding characteristic was the presence of rough endoplasmic reticulum with very dilated cisterns filled with a low electrodensity material. Additionally, MSCs had normal karyotypes (2n=64) as evidenced by cytogenetic analysis, and aneuploidy in metaphase was not observed. The protocols for isolating, culturing, and characterizing equine MSCs used in this study were shown to be appropriate for the production of a cell population with a good potential for differentiation and without aneuploidy that can be used to study future cellular therapies. © 2013 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Biotecnologia Animal - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Different methods and tests have been used to evaluate the pathogenic potential of distinct Y. enterocolitica serotypes and biotypes. We tested a total of 60 Y. enterocolitica strains, being 25 of human origin (serotype O3 biotype 4 and serotype O5 biotype 1); 6 of animal origin (serotype O3 biotype 4); 19 isolated from the environment (serotype O5.27 biotypes 1 and 2); and 8 isolated from food (serotype O5 biotype 1 and serotype 05.27 biotype 1). The methods used were based on plasmid gene expression (autoagglutination, calcium-dependence at 37 degrees C and Congo Red absorption tests), chromosomal gene expression (assays for pyrazinamidase activity, salicin fermentation and esculin hydrolysis), and invasion of HEp-2 cells. All but one of the Y. enterocolitica O3 strains, were found to be potentially pathogenic when submitted to the pyrazinamidase-salicin-esculin tests. In contrast, the results obtained with the assays related to plasmidial gene expression were not so uniform, probably due to plasmid loss. The least homogeneous results were obtained with the HEp-2 cell invasion test. Y. enterocolitica O5 behaved in a uniform manner when tested with the first two groups of tests (based on chromosomal and plasmidial gene expression), but not when tested with the HEp-2 invasion assay. The strains of serotype O5.27 biotype 1 presented a uniform behavior hen submitted to the chromosomic-related tests, showing no pathogenicity. However, they did not provide conclusive results with the tests related to plasmidial gene expression or HEp-2 cell invasion. We conclude that the tests related to chromosomal gene expression (esculin-salicin-pyrazinamidase) are simple and highly effective for the detection of potentially pathogenic Y. enterocolitica isolated from clinical cases.