7 resultados para acrylate
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An antioxidant, 1-(3',4'-dihydroxycinnamoyl) cyclopentane-2,3-diol [ or ( E)-2,3-dihydroxycyclopentyl-3-(3',4'-dihydroxyphenyl) acrylate ( 1)], and two known trans- and cis-chlorogenic acid methyl esters were isolated from the ethanolic extract of the leaves of Chimarrhis turbinata. The relative configuration of 1 was determined by NMR and by comparison of the circular dichroic spectrum ( CD) with those of the enantiomers of synthetic 3', 4'-dimethoxycinnamoyl analogues. The absolute configuration of one of the synthetic enantiomers was determined using the CD exciton chirality method. This established the structure of naturally occurring 1 as (E)- 2,3-dihydroxycyclopentyl- 3-(3', 4'-dihydroxyphenyl) acrylate.
Resumo:
Rheological characteristics of gels were studied, with the focus on their use as a cosmetic base. Some ideal characteristics can be predicted by the rheological characterization, such as the performance, with easy application and without dripping or forming lumps and bubbles. Moreover, it is possible to detect signs of physical instability. The gels were prepared with sodium carboxymethyl cellulose 3% and 5%, with Carbopol 940 (INCI: Carbomer) and with Carbopol Ultrez (INCI: Acrylates/C10-30 alkyl acrylate crosspolymer). The tests performed were yield stress, stress sweep and creep and recovery. The gel with 3% of sodium carboxymethyl cellulose presented the most appropriated behavior and can be indicated as the most suitable cosmetic base.
Resumo:
Objective: This study aimed to compare the sensory performance of a shampoo formulation with Polyurethane-14, AMP-acrylates copolymer (PAAC) in relation to control formulation in curly and natural hair tresses. Methods: Curly and natural hair tresses (n = 8) of equal size and weight were pre-treated by washing with a standard shampoo. After the hair tresses were treated with a formulation containing polymer (formulation A) and compared to hair tresses treated with control formulation (Formulation B). Each panelist (n=2) is asked to indicate which tress performs better for each of seven sensory attributes evaluated (quantity and creamy foam, combing, wet touch, frizz formation, curl definition and volume). It was collected images of hair tresses at 0, 1, 2, 4 and 24 hours of washing, comparing the attributes: volume, frizz formation and curl definition. The results were analyzed using table to test of paired assessment, being: SUPERIOR results - 8 and 7 positive evaluations; SIMILAR results - 2 to 6 positive evaluations; INFERIOR results - 1 and 0 positive evaluations. Results: The addition of the PAAC on the shampoo formulation provided definition and modeling of curls, reducing volume and frizz in 24 hours. There was also lower foam formation in the formulation with polymer PAAC. However, it is important to note that this attribute has inversely proportional effect to the creamy foam, since more creamy foam, smaller quantity. Conclusions: It was concluded that the shampoo developed was effective in defining and modeling curl in natural and curly hair.
Resumo:
This investigation reports the first application of admicellar polymerization to cellulose nanofibers in the form of bacterial cellulose, microfibrillated cellulose, and cellulose nanowhiskers using styrene and ethyl acrylate. The success of this physical sleeving was assessed by SEM, FTIR, and contact angle measurements, providing an original and simple approach to the modification of cellulose nanofibers in their pristine aqueous environment. © 2013 The Authors. Published by Elsevier Inc.