3 resultados para acrosomal system
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In order to study the morphological changes that occur in cells of the testes of isogenic black mouse C57BL/6/Uni into three periods during spermatogenetic used 15 mice divided into 3 groups of 5 animals with 40,50 and 60 days of age. The mice were sacrificed and weighed. Testicles were weighed and measured, and histologically processed and stained with HE, PAS and Masson Massom-H and evaluated under light microscopy. It was observed that group I with 40 days of age in the seminifcrous tubules had a lumen with sparse small amount of interstitial tubular cells. In the seminiferous epithelium type A spermatogonia, intermediate and B were identified, which occupied the compartment adbasal and intermingled with these cells in spermatocytes I in Pachytene and leptotene was observed, whereas in the adluminal compartment Golgi phase spermatids we observed the presence of acrosomal granule. In group II, the cells of the seminiferous epithelium were developed and it was observed in round spermatids cephalic hood phase plus many elongated spermatids in acrosome phase and Sertoli cells. In Group III, 60 days old, it was found that seminiferous epithelium which was of the tubules had elongated spermatids in acrosome phase and maturation, with elongated nuclei and acrosomal system typical of spermiation in the presence of sperm and residual bodies near the tubular lumen. Therefore morphological evolution of germ cell testicular spermatids can be checked and recognized in its four phases: Golgi, cap, acrosome and maturation over the age of the animal.
Resumo:
Spermatogenesis is a complex and very well organized process lasting from 30 to 75 days in mammals. The spermatogenic process has been described mainly in laboratory mammals, such as the rat, while correspondent studies in wild animals are scarce. The gerbil (Meriones unguiculatus) is a small rodent native of the arid regions of Mongolia and China. Few reports are available on reproduction in the male Mongolian gerbil. The present study provides the first description of the ultrastructural alterations in spermatid cytoplasm and nucleus, with particular reference to acrosome formation in gerbils. The testes were processed by conventional transmission electron microscopy technique. Based on the development of the acrosomal system and changes in nuclear morphology, the transformation of spermatids in spermatozoon was divided into 15 steps. There were four phases in the spermiogenesis process in the gerbil: Golgi, cap, acrosomal and maturation phases. This provides the foundation for a variety of future studies of the spermiogenesis of this animal. (C) 2000 Harcourt Publishers Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)