104 resultados para acoustic noise
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this work it is introduced a new approach to calculate the density of liquids in terms of the energies of the acoustic signals. This method is compared to other methods in the time domain (peak-to-peak amplitudes) and frequency domain magnitudes at a single frequency. It is used a measurement cell based on a multiple reflection technique, and it is developed an acoustic model for the cell. Simulations and experiments using several liquids are presented, showing that the energy method a less sensitive to noise than the other techniques. The relative errors in the density are smaller than 0.2% when compared to the values measured with a pycnometer.
Resumo:
In this article it is intended to discuss the issue of noise pollution from an unusual point of view: noise pollution is not only the result of sound increase worldwide, but, particularly, the poor quality of our listening habits in modern life as well. In contemporary society we are subject to a considerable amount of stimulus to all our senses: vision, scent, taste and hearing which are becoming more and more insensible due to over exposure in our environment. These increased stimuli make us look for alternatives to reduce our ability to perceive them and be protected from injuries. However, our sensitivity will also decrease. In the specific case of environment noise, over exposure has made us forget the enchantment of certain sounds that used to give us pleasure or evoke good feelings by many ways, making us recall certain good things, bringing particular moments of our lives to our memory or even filling us with strong emotion. The Canadian composer and music educator, R. Murray Schafer, believes that noise pollution is the result of a society who became deaf. Closing our ears to noise protect us from noise pollution but also prevent us from grasping subtleties of listening. Contemporary world does not help us to be aware of sound in the space around us; acquiring this hearing ability is a matter of focus, interest and practice. Sound education exercises are aimed at children, teenagers and adults who want to improve their listening ability to environmental sounds, perceive its proprieties and learn how sound affects us and touches our feelings. The results are easy to accomplish and contribute to our awareness of the sound environment around us and to the conception of the environmental sound as a composition made by everybody and everything through positive actions, strong will and high sensitivity. Copyright © (2011) by the International Institute of Acoustics & Vibration.
Resumo:
Police officers are exposed to impact noise coming from firearms, which may cause irreversible injuries to the hearing system.Aim: To evaluate the noise exposure in shooting stands during gunfire exercises, to analyze the acoustic impact of the noise produced by the firearms and to associate it with tonal audiometry results.Study design: Cross-sectional.Materials and methods: To measure noise intensity we used a digital sound level meter, and the acoustic analysis was carried out by means of the oscillations and cochlear response curves provided by the Praat software. 30 police officers were selected (27 males and 3 females).Results: The peak level measured was 113.1 dB(C) from a .40 pistol and 116.8 dB(C) for a .38 revolver. The values obtained for oscillation and Praat was 17.9 +/- 0.3 Barks, corresponding to the rate of 4,120 and 4,580 Hz. Audiometry indicated greater hearing loss at 4,000Hz in 86.7% of the cases.Conclusion: With the acoustic analysis it was possible to show cause and effect between the main areas of energy excitation of the cochlea (Praat cochlear response curve) and the frequencies of low hearing acuity.
Resumo:
Noise mapping has been used as an instrument for assessment of environmental noise, helping to support decision making on urban planning. In Brazil, urban noise is not yet recognized as a major environmental problem by the government. Besides, cities that have databases to drive acoustic simulations, making use of advanced noise mapping systems, are rare. This study sought an alternative method of noise mapping through the use of geoprocessing, which is feasible for the Brazilian reality and for other developing countries. The area chosen for the study was the central zone of the city of Sorocaba, located in So Paulo State, Brazil. The proposed method was effective in the spatial evaluation of equivalent sound pressure level. The results showed an urban area with high noise levels that exceed the legal standard, posing a threat to the welfare of the population.
Resumo:
We studied the signaling, territorial, and courtship behaviors of the diurnal frog Hylodes asper. Visual and acoustic communication were used during intraspecific interactions involving males, females. and subadults. Hylodes aspcr has a complex visual communication system, of which foot-flagging is the most distinctive display observed in the repertoire of visual signals. The splash zone produced by the waterfalls and torrents creates a high, nearly constant, humidity near the streams, reducing the risk of desiccation which enables the diurnal activity of H. asper. Although the ambient sound pressure levels (SPL), measured at the calling sites, are similar to the SPL of the advertisement calls, the high-pitched calls of H, asper, are spectrally different from the noise produced by the water current. Thus. The ambient noise produced by the water current may not interfere significantly with the acoustic communication of this species. The noise and the nearly constant and high humidity produced by the torrents and waterfalls, along with the availability of Light, probably favored the evolution of contrasting colors and visual communication in H. asper: Males of H, aspcr excavate underwater chambers that are probably used to shelter the eggs and to prevent the clutch from being drifted downstream.
Resumo:
An experimental investigation of the noise generated by cavitation in turbulent shear flows produced by confined sharp-edge orifice-plates is reported. The acoustic source strength of cavitation was determined by means of reciprocity type measurements. Experimentally determined scaling parameters are applied to a model to prototype scaling formula derived from dimensional analysis. The proposed formula is checked experimentally. Comparative photographic observations of the cavitation patterns for two different values of gas content are presented. The observed sound reduction, that occurs when supersaturated conditions exist downstream the orifice-plates, is explained by the effects of gas diffusion into the cavitation bubbles, and by simple acoustic attenuation.
Resumo:
Leakage in buried pipes is one of the main concerns for water companies due to the scarcity of potable water sources. Older metallic pipelines have been replaced by plastic pipes in such systems, which makes it more difficult to locate leaks using acoustics and vibration. This is mainly because of the high attenuation of leak signals caused by the damping in the pipe wall. To investigate acoustic methods in leak location in controlled conditions, a bespoke test rig was constructed in the UK. In this paper, data from this test-rig is used to discuss some issues that arise when using two contemporary correlators. Of particular interest, is the way in which a resonance in the system can have a profound effect on the estimate of the position of the leak depending on the way in which the leak noise signals are processed. © (2013) Trans Tech Publications.
Resumo:
The present study aimed to compare elderly and young female voices in habitual and high intensity. The effect of increased intensity on the acoustic and perceptual parameters was assessed. Sound pressure level, fundamental frequency, jitter, shimmer, and harmonic to noise ratio were obtained at habitual and high intensity voice in a group of 30 elderly women and 30 young women. Perceptual assessment was also performed. Both groups demonstrated an increase in sound pressure level and fundamental frequency from habitual voice to high intensity voice. No differences were found between groups in any acoustic variables on samples recorded with habitual intensity level. No significant differences between groups were found in habitual intensity level for pitch, hoarseness, roughness, and breathiness. Asthenia and instability obtained significant higher values in elderly than young participants, whereas, the elderly demonstrated lower values for perceived tension and loudness than young subjects. Acoustic and perceptual measures do not demonstrate evident differences between elderly and young speakers in habitual intensity level. The parameters analyzed may lack the sensitivity necessary to detect differences in subjects with normal voices. Phonation with high intensity highlights differences between groups, especially in perceptual parameters. Therefore, high intensity should be included to compare elderly and young voice.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. Many statistics have shown effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS.
Resumo:
Radial profiles are reported of average and rms temperature in a propane flame for the first, second, and third acoustic modes at four different axial positions above the burner in a Rijke-tube combustor. Selected plots of the power spectral density (PSD) of temperature fluctuations are also reported. These radial profiles are then compared to similar ones made in the same flame, but in the absence of the acoustic field. Visual observations and photographs of the flame showed a remarkable change in flame height and structure with the onset of acoustic oscillations. This reduction in flame length, caused by the enhanced mixing due to the acoustic velocity fluctuations, gave rise to higher and lower average and rms temperatures near or well above the burner, respectively. In general, the PSD plots had a broad frequency content. The general trend was a decrease in magnitude with an increase in frequency. All cases presented broad-band peaks at around 5 Hz related to the flame flickering phenomenon. Preferred frequencies were observed in the oscillating PSD plots related to the fundamental frequency as well as subharmonics in the tube. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This work presents recent improvements in a density measurement cell with a double-element transducer that can eliminate diffraction effects. A new mechanical design combined with the use of more appropriate materials has resulted in better parallelism between interfaces, more robust assembly, and chemical resistance. A novel method of signal processing, named energy method, is introduced to obtain the reflection coefficient, reducing sensitivity to noise and improving accuracy. The measurement cell operation is verified both theoretically, using an acoustic wave propagation model, and experimentally, using homogeneous liquids with different densities. The accuracy in the density measurement is 0.2% when compared with the measurements made with a pycnometer.
Resumo:
Speech signals degraded by additive noise can affects different applications in telecommunication. The noise may degrades the intelligibility of the speech signals and its waveforms as well. In some applications such as speech coding, both intelligibility and waveform quality are important but only intelligibility has been focused lastly. So, modern speech quality measurement techniques such as PESQ (Perceptual Evaluation of Speech Quality) have been used and classical distortion measurement techniques such as Cepstral Distance are becoming unused. In this paper it is shown that some classical distortion measures are still important in applications where speech corrupted by additive noise has to be evaluated.
Resumo:
This paper presents an experimental investigation of the characteristics of leak noise in plastic water-filled pipes. An experimental set-up was designed to identify the physical mechanisms of leak noise generation. Possible mechanisms include cavitation and turbulence. The experiments show that cavitation is not responsible for leak noise generation and clearly indicate that turbulence is the main mechanism, at least in the experiments conducted. An alternative experimental set-up was also designed to identify the characteristics of leak noise spectra and to investigate how the spectra are affected by the leak size and the leak flow velocity. A number of different hole sizes (leaks) starting from 1 mm diameter, increasing progressively every 0.5 mm until a size of 4 mm diameter were tested for different jet velocities and an empirical model that describes this behaviour is proposed.
Resumo:
Background: Noise is the most common agent of occupational exposure. It may induce both auditory and extraauditory dysfunction and increase the risk of work accidents. The purpose of this study was to estimate the fraction of accidents attributable to noise occupational exposure in a mid-size city located in southeastern Brazil. Materials and Methods: In this population case-control study, which included 108 cases and 324 controls, the incidence rate ratio of work accidents controlled for several covariables was obtained by classifying occupational noise exposure into three levels, as well as determining the prevalence in each level. Results: Based on these data, the attributable fraction was estimated as 0.6391 (95 CI = 0.2341-0.3676), i.e., 63 of the work accidents that took place in the study site were statistically associated with occupational noise exposure. Discussion: The causes of this association as well as its implications in the prevention of work accidents are discussed.