31 resultados para abiotic stress
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
It is well-documented that phytochromes can control plant growth and development from germination to flowering. Additionally, these photoreceptors have been shown to modulate both biotic and abiotic stress. This has led to a series of studies exploring the molecular and biochemical basis by which phytochromes modulate stresses, such as salinity, drought, high light or herbivory. Evidence for a role of phytrochromes in plant stress tolerance is explored and reviewed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi avaliar o efeito da interação da deficiência hídrica e da toxicidade do alumínio no crescimento inicial e teores de prolina livre em duas cultivares de guandu, IAPAR 43-Aratã e IAC Fava Larga, cultivadas em hidroponia. As plântulas foram submetidas aos estresses em solução nutritiva (pH 3,8), nos potenciais osmóticos de 0, -0,004, -0,006, -0,008 e -0,010 MPa, com 0, 0,25, 0,50, 0,75 e 1 mmol dm-3 de Al3+. O experimento foi conduzido em sala de crescimento, sob luminária com irradiância média de 190 mmol m-2 s-1 , fotoperíodo de 12 horas e temperatura de 25+1ºC. O delineamento experimental foi inteiramente casualizado, em arranjo fatorial 2x5x5 (duas cultivares de guandu, cinco potenciais osmóticos e cinco níveis de alumínio), com quatro repetições. Os dados foram submetidos às análises de regressão polinomial, agrupamento e componentes principais. A deficiência hídrica causa redução do crescimento da parte aérea do guandu, e a toxicidade do alumínio provoca diminuição do crescimento radicular. Houve aumento nos teores de prolina livre nas duas cultivares sob deficiência hídrica, e apenas na IAC Fava Larga sob toxicidade de alumínio. Na análise multivariada, foi observada alta correlação no crescimento e no acúmulo de prolina na cultivar IAC Fava Larga, o que evidencia provável tolerância aos estresses associados.
Resumo:
Although silicon has not been considered an essential element for plant growth and development, it has provided several benefits for the rice crop, especially under biotic and abiotic stress. The objective of this work was to evaluate macronutrient and silicon levels in upland rice cultivars cropped under water deficit and silicon fertilization. The experiment was carried out in greenhouse and the design was the completely randomized block, analyzed as a 2 x 2 x 2 factorial, which consisted of two cultivars, 'Maravilha' (modern group) and 'Caiapo' (traditional group), two silicon rates (0 and 350 kg ha(-1)) and two soil water tensions (-0.025 MPa and -0.050 MPa). Plant dry matter of the 'Maravilha' cultivar was higher compared to the other material. Higher soil water tensions decreased plant dry matter and macronutrient levels. Upland rice cultivars respond distinctively to soil water tensions and silicon rates.
Resumo:
1 Fragmentation severely alters physical conditions in forest understories, but few studies have connected these changes to demographic impacts on forest species using detailed experimental examination at the individual and population levels.2 Using a 32-month, reciprocal-transplant experiment, we show that individuals of the Amazonian understory herb Heliconia acuminata transplanted into forest fragments lost over 20% of their vegetative shoots, while those transplanted to continuous forest showed a slight gain. The leaf area of plants in fragments also increased at half the rate it did in continuous forest sites.3 It appears that the normal dry season stresses to which forest understorey plants are exposed are greatly exacerbated in fragments, causing plants to shed shoots and leaves.4 the observed shifts in size could help explain why populations in fragments are more skewed towards smaller demographic stage classes than those in continuous forest. These shifts in size structure could also result in reduced abundances of flowering plants, as reproduction in H. acuminata is positively correlated with shoot number.5 Fragmentation-related changes in growth rates resulting from abiotic stress may have significant demographic consequences.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)