8 resultados para abiotic factor
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Relief is regarded as the abiotic factor most strongly influencing pedogenic processes at a local scale. The spatial correlations between the composition of the clay fraction (iron - Fe and aluminum - Al oxides, kaolinite and organic matter - OM) and contents of available phosphorus (P) of an Oxisol were evaluated at hillslope scale under sugarcane cultivation. A total of 119 samples were collected at intersection points on a 100. ×. 100. m georeferenced grid of regularly spaced points 10. m apart in the 0.2-0.4. m depth in an area consisting of two landform components namely: component I (an area with a linear hillslope curvature), and component II (one with a concave-convex hillslope curvature). Soil OM and available P contents were subjected to descriptive statistics and geostatistical analyses in order to assess their variability and spatial dependence. All attributes studied were spatially dependent. Available phosphorus had positive spatial correlation with high crystalline goethite, hematite and gibbsite. Identifying small hillslope curvatures is useful with a view to better understanding their relationships with soil organic matter and available phosphorus, as well as kaolinite and Fe and Al oxide attributes. A simple correlation analysis by itself is inadequate to relate attributes, which requires a supplemental, geostatistical technique. © 2012 Elsevier B.V..
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phytochromes are red/far-red light photoreceptors that mediate a variety of photomorphogenic processes in plants, from germination to flowering. In addition, there is evidence that phytochromes are also part of the stress signalling response, especially in response to water deficit stress, which is the major abiotic factor limiting plant growth and crop productivity worldwide. In this study, we used the phyA (far red-insensitive; fri), phyB1 (temporary red-insensitive; tri) and phyB2 mutants of tomato (Solanum lycopersicum L.) to study the roles of these three phytochromes in drought stress responses. Compared to wild type (WT) plants grown under water-deficit stress conditions, the fri, tri, and phyB2 mutants did not exhibit altered dry weights, leaf areas, stomatal densities, or stomatal opening. The stomatal conductance of all three mutants was severely reduced under both fully-hydrated and water-deficit conditions. Although relative water contents did change after drought stress in each mutant, the most significant reduction in water potential during water stress was observed in the fri mutant. However, this mutant returned its water status to WT levels during rehydration. Although the phyB2 mutant lost more water from detached leaves during abscisic acid (ABA) treatment, phyB2 behaved like WT plants, indicating that this mutant was not insensitive to ABA. Overall, these results indicate that the phytochromes phyA, phyB1, and phyB2 modulate drought stress responses in tomato.
Resumo:
Water deficit is one of the factors which most limit agriculture yield and growth. Although sugar cane has moderate tolerance to drought, it presents high yield losses under the influence of this abiotic factor. Based on this fact, selection of genotypes tolerant to water stress may represent an alternative for decreasing the amount of water used for irrigation, while keeping or increasing yield. This study was performed in order to evaluate the performance of four sugarcane cultivars during initial development under water stress conditions, by means of morphological variables to select more tolerant genotypes to drought. The experiment was carried out in a greenhouse at the Department of Rural Engineering, College of Agricultural Sciences - UNESP/Botucatu – SP, from November 26th 2010 to April 5th 2011. A total of four sugar cane cultivars were evaluated (RB855453, RB92579, RB965902 and RB965917) under two treatments as follows: control (100% field capacity) and water stress (50% field capacity). Evaluations were performed at 0, 28 and 63 days after treatment application. The following morphological variables were analyzed: plant height, leaf area, leaf length, leaf width, number of green leaves, shoot and root dry matter. The RB855453 and RB92579 cultivars produced more shoot and root dry matter under water stress treatment, while the RB965902 and RB965917 cultivars had lower shoot and root dry matter production under the same conditions. Therefore, the RB855453 and RB 92579 cultivars can be considered tolerant while the RB965902 and RB965917 cultivars can be considered susceptible.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Abiotic factors, such as variations on salinity, exert influence on the animal distribution in the intertidal zone, including zoanthids. This study evaluated the osmotic, morphological and ethological effects of salinity variations on tropical zoanthid Zoanthus sociatus. In order to analyze the hypothesis of osmotic conformation, the zoanthid was submitted to salinity stress. To estimate the osmotic capabilities of the species studied, specimens collected in beach rocks were taken alive to the laboratory and maintained in water collected from the site. The osmoregulatory ability of Z. sociatus was determined by measuring the hemolymph osmolality under various salinity conditions and comparing it to the medium osmolality. Zoanthid Z. sociatus is able to present osmotic conformation in hemolymph salinity in a wide range of external salinity values. The bleaching frequency was high in low salinities and the mortality rate was high after two days of experiment. This experiment shows for the first time the importance of osmotic conformation in a tropical zoanthid and discusses the role of low salinity as a limiting factor for survival and distribution of these important animals in tropical coastal reefs.