4 resultados para Wing weight

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a new modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression and approximation. In this study, the SVR models had been introduced and developed to predict body and carcass-related characteristics of 2 strains of broiler chicken. To evaluate the prediction ability of SVR models, we compared their performance with that of neural network (NN) models. Evaluation of the prediction accuracy of models was based on the R-2, MS error, and bias. The variables of interest as model output were BW, empty BW, carcass, breast, drumstick, thigh, and wing weight in 2 strains of Ross and Cobb chickens based on intake dietary nutrients, including ME (kcal/bird per week), CP, TSAA, and Lys, all as grams per bird per week. A data set composed of 64 measurements taken from each strain were used for this analysis, where 44 data lines were used for model training, whereas the remaining 20 lines were used to test the created models. The results of this study revealed that it is possible to satisfactorily estimate the BW and carcass parts of the broiler chickens via their dietary nutrient intake. Through statistical criteria used to evaluate the performance of the SVR and NN models, the overall results demonstrate that the discussed models can be effective for accurate prediction of the body and carcass-related characteristics investigated here. However, the SVR method achieved better accuracy and generalization than the NN method. This indicates that the new data mining technique (SVR model) can be used as an alternative modeling tool for NN models. However, further reevaluation of this algorithm in the future is suggested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the genetic association of the SNP present in the ACTA1 gene with performance traits, organs and carcass of broilers to help marker-assisted selection of a paternal broiler line (TT) from EMBRAPA Swine and Poultry, Brazil. Genetic and phenotypic data of 1,400 broilers for 68 traits related to body performance, organ weights, weight of carcass parts, and yields as a percentage of organs and carcass parts were used. The maximum likelihood method, considering 4 analytical models, was used to analyze the genetic association between the SNP and these important economic traits. The association analysis was performed using a mixed animal model including the random effect of the animal (polygenic), and the fixed effects of sex (2 levels), hatch (5 levels) and SNP (3 levels), besides the random error. The traits significantly associated (P < 0.05) with the SNP were analyzed, along with body weight at 42 days of age (BW42), by the restricted maximum likelihood method using the multi-trait animal model to estimate genetic parameters. The analysis included the residual and additive genetic random effects and the sex-hatch fixed effect. The additive effects of the SNP were associated with breast meat (BMY), liver yield (LIVY), body weight at 35 days of age (BW35); drumstick skin (DSW), drumstick (DW) and breast (BW) weights. The heritability estimates for these traits, in addition to BW42, ranged from 0.24 ± 0.06 to 0.45 ± 0.08 for LIVY and BW35, respectively. The genetic correlation ranged from 0.02 ± 0.18 for LIVY and BMY to 0.97 ± 0.01 for BW35 and BW42. Based on the results of this study, it can be concluded that ACTA1 gene is associated with performance traits BW35, LIV and BMY, DW, BW and DW adjusted for body weight at 42 days of age. Therefore, the ACTA1 gene is an important molecular marker that could be used together with others already described to increase the economically important traits in broilers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)