48 resultados para Wind forecasting
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Laboratory studies of host-seeking olfactory behaviour in sandflies have largely been restricted to the American visceral leishmaniasis vector Lutzomyia longipalpis. In comparison, almost nothing is known about the chemical ecology of related species, which transmit American cutaneous leishmaniasis (ACL), due in part to difficulties in raising these insects in the laboratory. Understanding how ACL vectors locate their hosts will be essential to developing new vector control strategies to combat this debilitating disease.Methods: This study examined host-odour seeking behaviour of the ACL vector Nyssomyia neivai (Pinto) (=Lutzomyia neivai) using a wind tunnel olfactometer. The primary aim was to determine whether field-collected female N. neivai would respond to host odours in the laboratory, thereby eliminating the need to maintain colonies of these insects for behavioural experiments. Responses to two key host odour components, 1-octen-3-ol and lactic acid, and a commercially-available mosquito lure (BG-Lure (TM)) were assessed and compared relative to an air control. We also tested whether trials could be conducted outside of the normal evening activity period of N. neivai without impacting on fly behaviour, and whether the same flies could be used to assess baseline responses to air without affecting responses to octenol, thereby reducing the number of flies required for experiments.Results: Octenol was found to both activate host-seeking behaviour and attract female N. neivai in the wind tunnel, while lactic acid elicited weaker responses of activation and attractiveness under identical conditions. The BG-Lure did not activate or attract N. neivai under test conditions. Further experiments showed that sandfly behaviour in the wind tunnel was not affected by time of day, such that experiments need not be restricted to nocturnal hours. Moreover, using the same flies to measure both baseline responses to air and attraction to test compounds did not affect odour-seeking behaviour.Conclusions: The results of this study demonstrate that N. neivai taken from the field are suitable for use in laboratory olfactometer experiments. It is hoped this work will facilitate further research into chemical ecology of this species, and other ACL vectors.
Resumo:
The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.
Resumo:
This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Energy policies and technological progress in the development of wind turbines have made wind power the fastest growing renewable power source worldwide. The inherent variability of this resource requires special attention when analyzing the impacts of high penetration on the distribution network. A time-series steady-state analysis is proposed that assesses technical issues such as energy export, losses, and short-circuit levels. A multiobjective programming approach based on the nondominated sorting genetic algorithm (NSGA) is applied in order to find configurations that maximize the integration of distributed wind power generation (DWPG) while satisfying voltage and thermal limits. The approach has been applied to a medium voltage distribution network considering hourly demand and wind profiles for part of the U.K. The Pareto optimal solutions obtained highlight the drawbacks of using a single demand and generation scenario, and indicate the importance of appropriate substation voltage settings for maximizing the connection of MPG.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Um sistema de previsão numérica de tempo e de ondas oceânicas (SPTO) que possa ser operacionalizado no Atlântico Sul é proposto. O SPTO é composto por um modelo atmosférico de área limitada (MAL) e um modelo de ondas de superfície do oceano geradas pelo vento, aplicado em duas versões: uma de malha grossa (MPOMG) e outra de malha fina (MPOMF). O MPOMG abrange uma área de 10(6) km², e tem como finalidade gerar e propagar ondas em regiões remotas à costa brasileira. O MPOMF é aplicado em um domínio 10(4) km² com alta resolução, incorporando irregularidades batimétricas e com as condições iniciais e de fronteiras fomecidas pelo MPOMG. Os modelos utilizam dados de vento à 10 m acima da superfície do oceano. Os arquivos de vento, contendo a evolução espacial e temporais são gerados pelo MAL. Um exemplo de um evento real ocorrido no período de 9 a 11 de agosto de 1988 é apresentado utilizando o acoplamento proposto.
Resumo:
Uma equação de regressão múltipla MOS (da sigla em inglês para Model Output Statistics), para previsão da temperatura mínima diária do ar na cidade de Bauru, estado de São Paulo, é desenvolvida. A equação de regressão múltipla, obtida usando análise de regressão stepwise, tem quatro preditores, três do modelo numérico global do Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) e um observacional da estação meteorológica do Instituto de Pesquisas Meteorológicas (IPMet), Bauru. Os preditores são prognósticos para 24 horas do modelo global, válidos para 00:00GMT, da temperatura em 1000hPa, vento meridional em 850hPa e umidade relativa em 1000hPa, e temperatura observada às 18:00GMT. Esses quatro preditores explicam, aproximadamente, 80% da variância total do preditando, com erro quadrático médio de 1,4°C, que é aproximadamente metade do desvio padrão da temperatura mínima diária do ar observada na estação do IPMet. Uma verificação da equação MOS com uma amostra independente de 47 casos mostra que a previsão não se deteriora significativamente quando o preditor observacional for desconsiderado. A equação MOS, com ou sem esse preditor, produz previsões com erro absoluto menor do que 1,5°C em 70% dos casos examinados. Este resultado encoraja a utilização da técnica MOS para previsão operacional da temperatura mínima e seu desenvolvimento para outros elementos do tempo e outras localidades.
Resumo:
A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability.