5 resultados para Wildlife forensics
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Background: Illegal hunting is one of the major threats to vertebrate populations in tropical regions. This unsustainable practice has serious consequences not only for the target populations, but also for the dynamics and structure of tropical ecosystems. Generally, in cases of suspected illegal hunting, the only evidence available is pieces of meat, skin or bone. In these cases, species identification can only be reliably determined using molecular technologies. Here, we reported an investigative study of three cases of suspected wildlife poaching in which molecular biology techniques were employed to identify the hunted species from remains of meat.Findings: By applying cytochrome b (cyt-b) and cytochrome oxidase subunit I (COI) molecular markers, the suspected illegal poaching was confirmed by the identification of three wild species, capybara (Hydrochoerus hydrochaeris), Chaco Chachalaca (Ortalis canicollis) and Pampas deer (Ozotoceros bezoarticus). In Brazil, hunting is a criminal offense, and based on this evidence, the defendants were found guilty and punished with fines; they may still be sentenced to prison for a period of 6 to 12 months.Conclusions: The genetic analysis used in this investigative study was suitable to diagnose the species killed and solve these criminal investigations. Molecular forensic techniques can therefore provide an important tool that enables local law enforcement agencies to apprehend illegal poachers. © 2012 Sanches et al.; licensee BioMed Central Ltd.
Resumo:
Location or stock-specific landing data are necessary to improve management of shark stocks, especially those imperiled by overexploitation as a result of the international shark fin trade. In the current absence of catch monitoring directly at extraction sites, genetic stock identification of fins collected from major market supply chain endpoints offers an overlooked but potentially useful approach for tracing the fins back to their geographical, or stock of, origin. To demonstrate the feasibility of this approach, we used mitochondrial control region (mtCR) sequences to trace the broad geographical origin of 62 Hong Kong market-derived Sphyrna lewini fins. Of these fins 21% were derived from the western Atlantic, where this species is listed as 'Endangered' by the International Union for the Conservation of Nature (IUCN). We also show that S. lewini mtCR sequences are geographically segregated in the western Atlantic (overall ΦST = 0.74, n = 177 sharks), indicating that breeding females either remain close to, or home back to, their natal region for parturition. Mixed stock analysis simulations showed that it is possible to estimate the relative contributions of these mitochondrial stocks to fin mixtures in globally sourced trade hubs. These findings underscore the feasibility of using genetic stock identification to source market-derived shark fins to obtain essential and otherwise unavailable data on exploitation levels, and thus to productively inform stock assessment and management of S. lewini and potentially also of other fished shark species. © Inter-Research 2009.
Resumo:
This review of foot-and-mouth disease in cloven-hoofed, free-living animals, describes the disease, the wide range of the hosts, the carrier state, and the interrelationship between disease in domestic livestock and wildlife. This information becomes even more crucial to the development of control strategies when linked to the process of pathogenesis and the epidemiology of the disease.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)