11 resultados para Weak confinement regime

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline SnO2 quantum dots were synthesized at room temperature by hydrolysis reaction of SnCl2. The addition of tetrabutyl ammonium hydroxide and the use of hydrothermal treatment enabled one to obtain tin dioxide colloidal suspensions with mean particle radii ranging from 1.5 to 4.3 nm. The photoluminescent properties of the suspensions were studied. The particle size distribution was estimated by transmission electron microscopy. Assuming that the maximum intensity photon energy of the photoluminescence spectra is related to the band gap energy of the system, the size dependence of the band gap energies of the quantum-confined SnO2 particles was studied. This dependence was observed to agree very well with the weak confinement regime predicted by the effective mass model. This might be an indication that photoluminescence occurs as a result of a free exciton decay process. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a nonlinear Schrodinger equation to describe the dynamics of a superfluid Bose gas in the crossover from the weak-coupling regime, where an(1/3)<<1 with a the interatomic s-wave scattering length and n the bosonic density, to the unitarity limit, where a ->+infinity. We call this equation the unitarity Schrodinger equation (USE). The zero-temperature bulk equation of state of this USE is parametrized by the Lee-Yang-Huang low-density expansion and Jastrow calculations at unitarity. With the help of the USE we study the profiles of quantized vortices and vortex-core radius in a uniform Bose gas. We also consider quantized vortices in a Bose gas under cylindrically symmetric harmonic confinement and study their profile and chemical potential using the USE and compare the results with those obtained from the Gross-Pitaevskii-type equations valid in the weak-coupling limit. Finally, the USE is applied to calculate the breathing modes of the confined Bose gas as a function of the scattering length.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radar and satellite data from the Tropical Rainfall Measuring Mission-Large-Scale Biosphere-Atmosphere (TRMM-LBA) project have been examined to determine causes for convective storm initiation in the southwest Amazon region. The locations and times of storm initiation were based on the National Center for Atmospheric Research (NCAR) S-band dual-polarization Doppler radar (S-Pol). Both the radar and the Geostationary Operational Environmental Satellite-8 (GOES-8) visible data were used to identify cold pools produced by convective precipitation. These data along with high-resolution topographic data were used to determine possible convective storm triggering mechanisms. The terrain elevation varied from 100 to 600 m. Tropical forests cover the area with numerous clear-cut areas used for cattle grazing and farming. This paper presents the results from 5 February 1999. A total of 315 storms were initiated within 130 km of the S-Pol radar. This day was classified as a weak monsoon regime where convection developed in response to the diurnal cycle of solar heating. Scattered shallow cumulus during the morning developed into deep convection by early afternoon. Storm initiation began about 1100 LST and peaked around 1500-1600 LST. The causes of storm initiation were classified into four categories. The most common initiation mechanism was caused by forced lifting by a gust front (GF; 36%). Forcing by terrain (>300 m) without any other triggering mechanism accounted for 21% of the initiations and colliding GFs accounted for 16%. For the remaining 27% a triggering mechanism was not identified. Examination of all days during TRMM-LBA showed that this one detailed study day was representative of many days. A conceptual model of storm initiation and evolution is presented. The results of this study should have implications for other locations when synoptic-scale forcing mechanisms are at a minimum. These results should also have implications for very short-period forecasting techniques in any location where terrain, GFs, and colliding boundaries influence storm evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study aimed to identify Eimeria species in young and adult sheep raised under intensive and / or semi-intensive systems of a herd from Umuarama city, Parana State, Brazil using the traditional diagnostic methods and to correlate the infection level/types of infection in the different age/system in this herd. Fecal samples were collected from the rectum of 210 sheep and were subjected to laboratory analysis to differentiate the species. Furthermore, animals were observed to determine the occurrences of the clinical or subclinical forms of eimeriosis. Out of the 210 collected fecal samples, 147 (70%) were positive for Eimeria oocysts, and 101 (47.86%) belonged to young animals that were raised under intensive and / or semi-intensive farming systems. Oocysts from 9 species of Eimeria parasites were identified in the sheep at the following prevalence rates: E. crandallis, 50.0%; E. parva, 21.6%; E. faurei, 8.1%; E. ahsata, 8.1%; E. intricata, 5.4%; E. granulosa, 2.7%; E. ovinoidalis, 2.0%; E. ovina, 1.3%; and E. bakuensis, 0.6%. There were no differences regarding the more frequent Eimeria species among the different ages of animals or between the different farming management systems. Based on these data, E. crandallis was the most prevalent, followed by E. parva and E. faurei species, regardless of the age. Higher parasitism was diagnosed in the young animals that were raised in a confinement regime, and the disease found in the herd was classified as subclinical. Further studies should be conducted in this herd, to verify if the eimeriosis subclinical can cause damage especially in young animals with a high level of infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooper pairing in two dimensions is analyzed with a set of renormalized equations to determine its binding energy for any fermion number density and all coupling assuming a,generic pairwise residual interfermion interaction. Also considered are Cooper pairs (CP's) with nonzero center-of-mass momentum (CMM) and their binding energy is expanded analytically in powers of the CMM up to quadratic terms. A Fermi-sea-dependent linear term in the CMM dominates the pair excitation energy in weak coupling (also called the BCS regime) while the more familiar quadratic term prevails in strong coupling (the Bose regime). The crossover, though strictly unrelated to BCS theory per se, is studied numerically as it is expected to play a central role in a model of superconductivity as a Bose-Einstein condensation of CPs where the transition temperature vanishes for all dimensionality d less than or equal to 2 for quadratic dispersion, but is nonzero for all d greater than or equal to 1 for linear dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes have been at the forefront of nanotechnology, leading not only to a better understanding of the basic properties of charge transport in one dimensional materials, but also to the perspective of a variety of possible applications, including highly sensitive sensors. Practical issues, however, have led to the use of bundles of nanotubes in devices, instead of isolated single nanotubes. From a theoretical perspective, the understanding of charge transport in such bundles, and how it is affected by the adsorption of molecules, has been very limited, one of the reasons being the sheer size of the calculations. A frequent option has been the extrapolation of knowledge gained from single tubes to the properties of bundles. In the present work we show that such procedure is not correct, and that there are qualitative differences in the effects caused by molecules on the charge transport in bundles versus isolated nanotubes. Using a combination of density functional theory and recursive Green's function techniques we show that the adsorption of molecules randomly distributed onto the walls of carbon nanotube bundles leads to changes in the charge density and consequently to significant alterations in the conductance even in pristine tubes. We show that this effect is driven by confinement which is not present in isolated nanotubes. Furthermore, a low concentration of dopants randomly adsorbed along a two-hundred nm long bundle drives a change in the transport regime; from ballistic to diffusive, which can account for the high sensitivity to different molecules.