5 resultados para War of 1812, Lincoln Regiment, Chippewa, Thomas Dickson, Thomas Clark, Militia

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to verify the effect of the passive recovery time following a supramaximal sprint exercise and the incremental exercise test on the lactate minimum speed (LMS). Thirteen sprinters and 12 endurance runners performed the following tests: 1) a maximal 500 m sprint followed by a passive recovery to determine the time to reach the peak blood lactate concentration; 2) after the maximal 500 m sprint, the athletes rested eight mins, and then performed 6 x 800 m incremental test, in order to determine the speed corresponding to the lower blood lactate concentration (LMS1) and; 3) identical procedures of the LMS1, differing only in the passive rest time, that was performed in accordance with the time to peak lactate (LMS2). The time (min) to reach the peak blood lactate concentration was significantly higher in the sprinters (12.76+/-2.83) than in the endurance runners (10.25+/-3.01). There was no significant difference between LMS1 and LMS2, for both endurance (285.7+/-19.9; 283.9+/-17.8 m/min; r= 0.96) and sprint runners (238.0+/-14.1; 239.4+/-13.9 m/min; r= 0.93), respectively. We can conclude that the LMS is not influenced by a passive recovery period longer than eight mins (adjusted according with the time to peak blood lactate), although blood lactate concentration may differ at this speed. The predominant type of training (aerobic or anaerobic) of the athletes does not seem to influence the phenomenon previously described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to analyze the effects of exercise mode on the validity of onset of blood lactate accumulation (OBLA-3.5-mM fixed blood lactate concentration) to predict the work-rate at maximal lactate steady state (MLSSwork-rate). Eleven recreationally active mates (21.3 +/- 2.9 years, 72.8 +/- 6.7 kg, 1.78 +/- 0.1 m) performed randomly incremental tests to determine OBLA (stage duration of 3 min), and 2 to 4 constants work-rate exercise tests to directly determine maximal lactate steady state parameters on a cycle-ergometer and treadmill. For both exercise modes, the OBLA was significantly correlated to MLSSwork-rate, (cycling: r = 0.81 p = 0.002; running: r = 0.94, p < 0.001). OBLA (156.2 +/- 41.3 W) was lower than MLSSwork-rate (179.6 +/- 26.4 W) during cycling exercise (p = 0.007). However, for running exercise, there was no difference between OBLA (3.2 +/- 0.6 m s(-1)) and MLSSwork-rate (3.1 +/- 0.4 m s(-1)). The difference between OBLA and MLSSworkrate on the cycle-ergometer (r = 0.86; p < 0.001) and treadmill (r = 0.64; p = 0.048) was significantly related to the specific MLSS. We can conclude that the validity of OBLA on predicting MLSSwork-rate is dependent on exercise mode and that its disagreement is related to individual variations in MLSS. (C) 2007 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer cells constitute a population of lymphocytes able to non-specifically destroy virus-infected and some kinds of tumor cells. Since this lytic activity was shown by non-immunized animals the phenomenon is denominated natural killer (NK) activity and contrasts with specific cytotoxicity performed by cytolytic T lymphocytes (CTLs) because it does not depends on MHC-restricted peptides recognition. In fact, the main feature of most functional receptors of NK cells (NKRs) is their ability to be inhibited by different kinds of class I MHC antigens. In the middle of the 1950's, Burnet & Thomas forged the concept of tumor immunosurveillance and NK cells can be considered one of the main figures in this phenomenon both for effector and regulatory functions. In the present review the early studies on the biology of NK cells were revisited and both their antitumor activity and dependence on the activation by cytokines are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the relationship between blood lactate and glucose during an incremental test after exercise induced lactic acidosis, under normal and acute β-adrenergic blockade. Eight fit males (cyclists or triathletes) performed a protocol to determine the intensity corresponding to the individual equilibrium point between lactate entry and removal from the blood (incremental test after exercise induced lactic acidosis), determined from the blood lactate (Lacmin) and glucose (Glucmin) response. This protocol was performed twice in a double-blind randomized order by ingesting either propranolol (80 mg) or a placebo (dextrose), 120 min prior to the test. The blood lactate and glucose concentration obtained 7 minutes after anaerobic exercise (Wingate test) was significantly lower (p<0.01) with the acute β-adrenergic blockade (9.1±1.5 mM; 3.9±0.1 mM), respectively than in the placebo condition (12.4±1.8 mM; 5.0±0.1 mM). There was no difference (p>0.05) between the exercise intensity determined by Lacmin (212.1±17.4 W) and Glucmin (218.2±22.1 W) during exercise performed without acute β-adrenergic blockade. The exercise intensity at Lacmin was lowered (p<0.05) from 212.1±17.4 to 181.0±15.6 W and heart rate at Lacmin was reduced (p<0.01) from 161.2±8.4 to 129.3±6.2 beats min-1 as a result of the blockade. It was not possible to determine the exercise intensity corresponding to Glucmin with β-adrenergic blockade, since the blood glucose concentration presented a continuous decrease during the incremental test. We concluded that the similar pattern response of blood lactate and glucose during an incremental test after exercise induced lactic acidosis, is not present during β-adrenergic blockade suggesting that, at least in part, this behavior depends upon adrenergic stimulation.