9 resultados para Walker Museum of Paleontology
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this article, seven Bdellidae Dugès (Acari: Trombidiformes) of the Museum of Comparative Zoology, originally described by Nathan Banks are studied: Cyta americana (Banks, 1902), Bdella tenella Banks, 1896, Bdella utilis Banks, 1914, Bdella californica Banks, 1904, Bdella cardinalis Banks, 1894, Bdella peregrina Banks, 1894 and Bdella brevitarsis Banks. Bdella tenella and Bdella californica are transferred to the genera Spinibdella and Bdellodes, respectively. Bdella brevitarsis, previously a nomen nudum, is herein described for the first time under the genus Hexabdella. http://zoobank.org/urn:lsid: zoobank.org:pub:A18C8C10-8C8A-4873-AF0B-D1A9164CD7E8 © 2013 Copyright 2013 Taylor & Francis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The evidentiary basis of the currently accepted classification of living amphibians is discussed and shown not to warrant the degree of authority conferred on it by use and tradition. A new taxonomy of living amphibians is proposed to correct the deficiencies of the old one. This new taxonomy is based on the largest phylogenetic analysis of living Amphibia so far accomplished. We combined the comparative anatomical character evidence of Haas (2003) with DNA sequences from the mitochondrial transcription unit HI (12S and 16S ribosomal RNA and tRNA(Valine) genes, 2,400 bp of mitochondrial sequences) and the nuclear genes histone H3, rhodopsin, tyrosinase, and seven in absentia, and the large ribosomal subunit 28S (approximate to 2,300 bp of nuclear sequences; ca. 1.8 million base pairs; x ($) over bar = 3.7 kb/terminal). The dataset includes 532 terminals sampled from 522 species representative of the global diversity of amphibians as well as seven of the closest living relatives of amphibians for outgroup comparisons.
Resumo:
Newly discovered benthic fossils and specimens illustrated in the paleontological literature indicate that drilling predators (or parasites) were present in the Permian. New field data from southern Brazil document the first drill holes ever reported for Permian bivalve mollusks. In addition, a literature review revealed drill holes in shells of articulate brachiopods from Russia, Greece, and West Texas. Holes range in size from 0.1 to 5.8 mm and are typically round, cylindrical, singular penetrations perpendicular to the valve surface. Incomplete, healed, and multiple holes are absent. Drilling frequency, a proxy for predation intensity, is very low: less than 1 percent (this estimate may be seriously affected by taphonomic and monographic biases). Literature data suggest that frequency of drilled specimens varied significantly among higher brachiopod taxa. The geography and stratigraphy of drilled specimens indicate that drilling organisms were worldwide in their occurrence and continuously present in marine ecosystems throughout the Permian. This report is consistent with other recent studies indicating that although drillers were continuously present throughout the Phanerozoic, drilling intensity was lower in the Late Paleozoic and early Mesozoic.
Resumo:
The purpose of this study was to evaluate the damage potential of Dasineura sp. (Diptera: Cecidomyiidae) in the pepper cultivars and show its occurrence in Piracicaba, SP. This experiment was carried out from July to November 1998. The occurrence and damages pest in the fruits were determined by weekly evaluations of pepper hybrids, 'Magali R.' larvals were collected from floral buttons and adults were collected from the incubation of buttons in humidity chamber. Healthy and infested fruits were evaluated for damages caused by pest insects. The results indicated that the damages can reach 100% in some periods of evaluation and that the production losses are significantly high with no application of insecticides. The taxonomy study was performed at National Museum of Federal University of Rio de Janeiro (UFRJ). The insect species classification will be the object of study since there is a possibility of observing a specie not described yet.
Resumo:
Hylidae is a large family of American, Australopapuan, and temperate Eurasian treefrogs of approximately 870 known species, divided among four subfamilies. Although some groups of Hylidae have been addressed phylogenetically, a comprehensive phylogenetic analysis has never been presented. The first goal of this paper is to review the current state of hylid systematics. We focus on the very large subfamily Hylinae (590 species), evaluate the monophyly of named taxa, and examine the evidential basis of the existing taxonomy. The second objective is to perform a phylogenetic analysis using mostly DNA sequence data in order to (1) test the monophyly of the Hylidae; (2) determine its constituent taxa, with special attention to the genera and species groups which form the subfamily Hylinae, and c) propose a new, monophyletic taxonomy consistent with the hypothesized relationships. We present a phylogenetic analysis of hylid frogs based on 276 terminals, including 228 hylids and 48 outgroup taxa. Included are exemplars of all but 1 of the 41 genera of Hylidae (of all four nominal subfamilies) and 39 of the 41 currently recognized species groups of the species-rich genus Hyla. The included taxa allowed us to test the monophyly of 24 of the 35 nonmonotypic genera and 25 species groups of Hyla. The phylogenetic analysis includes approximately 5100 base pairs from four mitochondrial (12S, tRNA valine, 16S, and cytochrome b) and five nuclear genes (rhodopsin, tyrosinase, RAG-1, seventh in absentia, and 28S), and a small data set from foot musculature. Concurring with previous studies, the present analysis indicates that Hemiphractinae are not related to the other three hylid subfamilies. It is therefore removed from the family and tentatively considered a subfamily of the paraphyletic Leptodactylidae. Hylidae is now restricted to Hylinae, Pelodryadinae, and Phyllomedusinae. Our results support a sister-group relationship between Pelodryadinae and Phyllomedusinae, which together form the sister taxon of Hylinae. Agalychnis, Phyllomedusa, Litoria, Hyla, Osteocephalus, Phrynohyas, Ptychohyla, Scinax, Smilisca, and Trachycephalus are not monophyletic. Within Hyla, the H. albomarginata, H. albopunctata, H. arborea, H. boons, H. cinerea, H. eximia, H. geographica, H. granosa, H. microcephala, H. miotympanum, H. tuberculosa, and H. versicolor groups are also demonstrably nonmonophyletic. Hylinae is composed of four major clades. The first of these includes the Andean stream-breeding Hyla, Aplastodiscus, all Gladiator Frogs, and a Tepuian clade. The second clade is composed of the 30-chromosome Hyla, Lysapsus, Pseudis, Scarthyla, Scinax (including the H. uruguaya group), Sphaenorhynchus, and Xenohyla. The third major clade is composed of Nyctimantis, Phrynohyas, Phyllodytes, and all South American/West Indian casque-headed frogs: Aparasphenodon, Argenteohyla, Corythomantis, Osteocephalus, Osteopilus, Tepuihyla, and Trachycephalus. The fourth major clade is composed of most of the Middle American/Holarctic species groups of Hyla and the genera Acris, Anotheca, Duellmanohyla, Plectrohyla, Pseudacris, Ptychohyla, Pternohyla, Smilisca, and Triprion. A new monophyletic taxonomy mirroring these results is presented where Hylinae is divided into four tribes. Of the species currently in Hyla, 297 of the 353 species are placed in 15 genera; of these, 4 are currently recognized, 4 are resurrected names, and 7 are new. Hyla is restricted to H. femoralis and the H. arborea, H. cinerea, H. eximia, and H. versicolor groups, whose contents are redefined. Phrynohyas is placed in the synonymy of Trachycephalus, and Pternohyla is placed in the synonymy of Smilisca. The genus Dendropsophus is resurrected to include all former species of Hyla known or suspected to have 30 chromosomes. Exerodonta is resurrected to include the former Hyla sumichrasti group and some members of the former H. miotympanum group. Hyloscirtus is resurrected for the former Hyla armata, H. bogotensis, and H. larinopygion groups. Hypsiboas is resurrected to include several species groups - many of them redefined here - of Gladiator Frogs. The former Hyla albofrenata and H. albosignata complexes of the H. albomarginata group are included in Aplastodiscus. New generic names are erected for (1) Agalychnis calcarifer and A. craspedopus; (2) Osteocephalus langsdorffii; the (3) Hyla aromatica, (4) H. bromeliacia, (5) H. godmani, (6) H. mixomaculata, (7) H. taeniopus, (8) and H. tuberculosa groups; (9) the clade composed of the H. pictipes and H. pseudopuma groups; and (10) a clade composed of the H. circumdata, H. claresignata, H. martinsi, and H. pseudopseudis groups. Copyright © American Museum of Natural History 2005.
Resumo:
The known diversity of dart-poison frog species has grown from 70 in the 1960s to 247 at present, with no sign that the discovery of new species will wane in the foreseeable future. Although this growth in knowledge of the diversity of this group has been accompanied by detailed investigations of many aspects of the biology of dendrobatids, their phylogenetic relationships remain poorly understood. This study was designed to test hypotheses of dendrobatid diversification by combining new and prior genotypic and phenotypic evidence in a total evidence analysis. DNA sequences were sampled for five mitochondrial and six nuclear loci (approximately 6,100 base pairs [bp]; x=3,740 bp per terminal; total dataset composed of approximately 1.55 million bp), and 174 phenotypic characters were scored from adult and larval morphology, alkaloid profiles, and behavior. These data were combined with relevant published DNA sequences. Ingroup sampling targeted several previously unsampled species, including Aromobates nocturnus, which was hypothesized previously to be the sister of all other dendrobatids. Undescribed and problematic species were sampled from multiple localities when possible. The final dataset consisted of 414 terminals: 367 ingroup terminals of 156 species and 47 outgroup terminals of 46 species. Direct optimization parsimony analysis of the equally weighted evidence resulted in 25,872 optimal trees. Forty nodes collapse in the strict consensus, with all conflict restricted to conspecific terminals. Dendrobatids were recovered as monophyletic, and their sister group consisted of Crossodactylus, Hylodes, and Megaelosia, recognized herein as Hylodidae. Among outgroup taxa, Centrolenidae was found to be the sister group of all athesphatanurans except Hylidae, Leptodactyidae was polyphyletic, Thoropa was nested within Cycloramphidae, and Ceratophryinae was paraphyletic with respect to Telmatobiinae. Among dendrobatids, the monophyly and content of Mannophryne and Phyllobates were corroborated. Aromobates nocturnus and Colostethus saltuensis were found to be nested within Nephelobates, and Minyobates was paraphyletic and nested within Dendrobates. Colostethus was shown to be rampantly nonmonophyletic, with most species falling into two unrelated cis- and trans-Andean clades. A morphologically and behaviorally diverse clade of median lingual process-possessing species was discovered. In light of these findings and the growth in knowledge of the diversity of this large clade over the past 40 years, we propose a new, monophyletic taxonomy for dendrobatids, recognizing the inclusive clade as a superfamily (Dendrobatoidea) composed of two families (one of which is new), six subfamilies (three new), and 16 genera (four new). Although poisonous frogs did not form a monophyletic group, the three poisonous lineages are all confined to the revised family Dendrobatidae, in keeping with the traditional application of this name. We also propose changes to achieve a monophyletic higher-level taxonomy for the athesphatanuran outgroup taxa. Analysis of character evolution revealed multiple origins of phytotelm-breeding, parental provisioning of nutritive oocytes for larval consumption (larval oophagy), and endotrophy. Available evidence indicates that transport of tadpoles on the dorsum of parent nurse frogs-a dendrobatid synapomorphy-is carried out primitively by male nurse frogs, with three independent origins of female transport and five independent origins of biparental transport. Reproductive amplexus is optimally explained as having been lost in the most recent common ancestor of Dendrobatoidea, with cephalic amplexus arising independently three times. © American Museum of Natural History 2006.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)