36 resultados para WEYL
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We provide physical interpretation for the four parameters of the stationary Lewis metric restricted to the Weyl class. Matching this spacetime to a completely anisotropic, rigidly rotating, fluid cylinder, we obtain from the junction conditions that one of these parameters is proportional to the vorticity of the source. From the Newtonian approximation a second parameter is found to be proportional to the energy per unit of length. The remaining two parameters may be associated to a gravitational analog of the Aharanov-Bohm effect. We prove, using the Cartan scalars, that the Weyl class metric and static Levi-Civita metric are locally equivalent, i.e., indistinguishable in terms of its curvature.
Resumo:
In this paper I discuss the version of predicative analysis put forward by Hermann Weyl in Das Kontinuum. I try to establish how much of the underlying motivation for Weyl's position may be due to his acceptance of a phenomenological philosophical perspective. More specifically, I analyze Weyl's philosophical ideas in connexion with the work of Husserl, in particular Logische Untersuchungen and Ideen I.I believe that this interpretation of Weyl can clarify the views on mathematical existence and mathematical intuition which are implicit in Das Kontinuum.
Resumo:
We extend the Weyl-Wigner transformation to those particular degrees of freedom described by a finite number of states using a technique of constructing operator bases developed by Schwinger. Discrete transformation kernels are presented instead of continuous coordinate-momentum pair system and systems such as the one-dimensional canonical continuous coordinate-momentum pair system and the two-dimensional rotation system are described by special limits. Expressions are explicitly given for the spin one-half case. © 1988.
Resumo:
The Weyl-Wigner correspondence prescription, which makes great use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for noncommutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. Both an Abelian and a symmetric projective Kac algebra are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras.
Resumo:
We use the Weyl-van der Waerden spinor technique to construct helicity wave functions for massless and massive spin-3/2 fermions. We apply our formalism to evaluate helicity amplitudes taking into account some phenomenological couplings involving these particles.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds an unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein-Hilbert, Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field-Weyl, Majorana, flagpole, or flag-dipole spinor fields-yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term, we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion one-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.
Resumo:
Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.
Resumo:
The main aspects of a discrete phase space formalism are presented and the discrete dynamical bracket, suitable for the description of time evolution in finite-dimensional spaces, is discussed. A set of operator bases is defined in such a way that the Weyl-Wigner formalism is shown to be obtained as a limiting case. In the same form, the Moyal bracket is shown to be the limiting case of the discrete dynamical bracket. The dynamics in quantum discrete phase spaces is shown not to be attained from discretization of the continuous case.
Resumo:
Dual-helicity eigenspinors of the charge conjugation operator [eigenspinoren des ladungskonjugationsoperators (ELKO) spinor fields] belong-together with Majorana spinor fields-to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class (5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three, respectively, corresponding to flagpole, flag-dipole, and Weyl spinor fields. This paper is devoted to investigate and provide the necessary and sufficient conditions to map Dirac spinor fields to ELKO, in order to naturally extend the standard model to spinor fields possessing mass dimension 1. As ELKO is a prime candidate to describe dark matter, an adequate and necessary formalism is introduced and developed here, to better understand the algebraic, geometric, and physical properties of ELKO spinor fields, and their underlying relationship to Dirac spinor fields. (c) 2007 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)