7 resultados para WATER EMULSIONS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The knowledge of rheological characteristics can indicate the emulsions properties, thus, nowadays rheology is used in the cosmetic and pharmaceutical industries, even to study the influence of rheological additives on them. Ten emulsions were prepared with 5% and 10% of nonionic emulsifier. Two of them were used as controls while in the others were added thickening agents. Rheological analyses were performed. The results showed that all emulsions are non-Newtonian, thixotropics and viscoelastics fluids. The thickening agents could modify the rheological characteristics of the emulsions and knowing the influence of them is easy to adopt one to reach the desirable performance. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study was developed to evaluate the performance of different coagulant and pH dosages by applying the use of Dissolved Air Flotation (FAD) to enable its use in effluent treatment of the extraction process of palm oil. The study was developed in the laboratory, where studies about emulsions stability were made for the production of a synthetic effluent which best suit the characteristics of raw effluent. The synthetic water that would be used in the tests of FAD was produced, once the stability and characterization which best approached the raw wastewater was obtained. Trials tested three coagulant doses, combined with various pH ranges and five upward velocities (Va), finding an optimal range of this combination. Some operating parameters such as time and gradient of rapid mixing (20 s / 1000 s-1), time and gradient flotation (15 min / 60 s-1), chamber pressure saturation (450 kPa) and recirculation rate (20%) were set. In this way, samples were collected for analysis of the removal of turbidity parameters, suspended solids and oils and greases. This one is obtained by a correlation turbidity x oils and greases, referring to the previous analysis. The degree of removal obtained were 73,97% for turbidity, 51,4% for total suspended solids and 86,2% for oils and greases. Removal rates may be increased in later studies, by ranging the velocity gradient and flocculation parameters and the recirculation ratio, and by using lower flotation speeds to these effluent characteristics.
Resumo:
A tangential filtration process was implemented in this study using porous ceramic tubes made of alpha-alumina produced by the slip-casting technique. These tubes were sintered at 1450 degrees C and characterized by mercury intrusion porosimetry, which revealed a mean pore size of 0.5 mu m. The tubes were chemically impregnated with a zirconium citrate solution, after which they were calcined and heat treated at temperatures of up to 600 and 900 degrees C to eliminate volatile organic compounds and transform the zirconium citrate into zirconium oxide impregnated in the alumina in the form of nanoparticle agglomerates. The microporous pipes were tested on a microfiltration hydraulic system to analyze their performance in the demulsification of sunflower oil and water mixtures. The fluid-dynamic parameters of Reynolds number and transmembrane pressure were varied in the process. The volume of permeate was analyzed by measuring the Total Organic Carbon concentration (TOC), which indicated 99% of oil phase retention. The emulsified mixture was characterized by optical microscopy, while the morphology and composition of the impregnated microporous tubes were analyzed by scanning electron microscopy (SEM). Quantification of the TOC values for the tube impregnated once at 600 degrees C showed the best demulsification performance, with the concentration on permeate smaller than 10 mg/L. The impregnated tube sintered once at 900 degrees C presented low carbon concentration (smaller than 20 mg/L), has the advantage of presenting the greatest trans-membrane flux in relation to the other microporous tube. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Measurements of ultrasonic attenuation and velocity in milk and low concentration water-in-oil (W/O) emulsion were conducted, using a measurement cell with a double-element transducer that eliminates diffraction losses. The milk is characterized by the attenuation coefficient, while in the case of water-in-oil emulsions, the characterization is best represented by the propagation velocity.
Resumo:
Samples of water based commercial acrylic resin paints were spread in a film form on slides, dried at room temperature and exposed to solar radiation for up to eight months.The characterization and quantification of resins and charges in the white paint emulsion were carried out for the thermal decomposition. Besides this, X-ray diffractometry was used to identify CaCO3 as charge and TiO2 (rutile phase) as pigment.It was observed through thermal techniques similar behavior to the samples even though with varied exposure time.Kinetic studies of the samples allowed to obtain the activation energy (Ea) and Arrhenius parameters (A) to the thermal decomposition of acrylic resin to three different commercial emulsion (called P-1, P-2, P-3) through non-isothermal procedures. The values of E. varied regarding the exposition time (eight months) and solar radiation from 173 to 197 U mol(-1) (P-1 sample), from 175 to 226 W mol(-1) (P-2 sample) and 206 to 197 kJ mol(-1) (P-3 sample).Kinetic Compensation Effect (KCE) observed for samples P-2 and P-3 indicate acrylic resin s present in these may be similar in nature. This aspect could be observed by a small difference in the thermal behavior of the TG curves from P I to P-2 and P-3 sample.The simulated kinetic model to all the samples was the autocatalytic estdk Berggreen.
Resumo:
An accurate, sensitive, precise and rapid reversed-phase high-performance liquid chromatographic method was successfully developed and validated for the determination of caffeic acid (CA) in emulsions. The best separation was achieved on a 250 × 4.6 mm, 5.0 µm particle size RP18 XDB Waters column using ethanol and purified water (40:60 v/v) adjusted to pH 2.5 with acetic acid as the mobile phase at a flow rate of 0.7 mL/min. Ultraviolet detection was performed at 325 nm at ambient column temperature (25°C). The method was linear over the concentration range of 10-60 µg/mL (r(2) = 0.9999) with limits of detection and quantification of 1.44 and 4.38 µg/mL, respectively. CA was subjected to oxidation, acid, base and neutral degradation, as well as photolysis and heat as stress conditions. There were no interfering peaks at or near the retention time of CA. The method was applied to the determination of CA in standard and pharmaceutical products with excellent recoveries. The method is applicable in the quality control of CA.