13 resultados para Voyager

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar as características físico-químicas, a qualidade nutricional e a suscetibilidade ao esverdeamento pós-colheita de tubérculos de cultivares de batata. Utilizou-se o delineamento experimental de blocos ao acaso, com cinco repetições. Os tratamentos consistiram de 11 cultivares (Ágata, Ambra, Annabelle, Asterix, Atlantic, Cupido, Daisy, Fontane, Innovator, Markies e Voyager). As cultivares Ágata, Ambra, Annabelle, Cupido e Voyager apresentam tubérculos com polpa de menor firmeza (6,82 a 8,25 N) e baixos teores de matéria seca (14,46 a 17,57%), carboidratos (10,97 a 12,51%) e amido (10,21 a 12,26%), adequados para o mercado fresco, a preparação de massas e o uso culinário. Já as cultivares Atlantic, Fontane e Innovator apresentam polpa firme (9,14 a 9,55 N) e elevados teores de matéria seca (19,68 a 21,63%), carboidratos (14,49 a 15,90%) e amido (14,29 a 15,74%), adequados para fritura. As cultivares Asterix e Markies apresentam teores intermediários dessas características e são indicadas para o preparo de massas e fritura. As cultivares Innovator e Markies apresentam melhor qualidade nutricional, com elevados teores de minerais (P, K, Mg, Cu e Mn) e de proteína, enquanto as cultivares Ágata e Ambra apresentam menor qualidade nutricional e proteica. A cultivar Voyager apresenta maior esverdeamento pós-colheita que as cultivares Annabelle, Fontane, Markies, Ambra e Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the 'shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of 'propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial 'streaks' seen in the F ring. The related 'thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system formed by the F ring and two close satellites, Prometheus and Pandora, has been analysed since the time that Voyager visited the planet Saturn. During the ring plane crossing in 1995 the satellites were found in different positions as predicted by the Voyager data. Besides the mutual effects of Prometheus and Pandora, they are also disturbed by a massive F ring. Showalter et al. [Icarus 100 (1992) 394] proposed that, the core of the ring has a mass which corresponds to a moonlet varying in size from 15 to 70 kin in radius which can prevent the ring from spreading due to dissipative forces, such as Poynting-Robertson drag and collisions. We have divided this work into two parts. Firstly we analysed the secular interactions between Prometheus-Pandora and a massive F ring using the secular theory. Our results show the variation in eccentricity and inclination of the satellites and the F ring taking into account a massive ring corresponding to a moonlet of different sizes. There is also a population of dust particles in the ring in the company of moonlets at different sizes [Icarus 109 (1997) 304]. We also analysed the behaviour of these particles under the effects of the Poynting-Robertson drag and radiation pressure. Our results show that the time scale proposed for a dust particle to leave the ring is much shorter than predicted before even in the presence of a coorbital moonlet. This result does not agree with the confinement model proposed by Dermott et al. [Nature 284 (1980) 309]. In 2004, Cassini mission will perform repeated observations of the whole system, including observations of the satellites and the F ring environment. These data will help us to better understand this system. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some Voyager images showed that the F ring of Saturn is composed of at least four separate, non-intersecting, strands covering about 45 degrees in longitude. According to Murray et al. [Murray, C.D., Gordon, M., Giuliatti Winter, S.M. Unraveling the strands of Saturn's F ring. Icarus 129, 304, 1997.] this structure may be caused by undetected satellites embedded in the gaps.Due to precession, the satellites Prometheus and Pandora and the ring particles can experience periodic close encounters. Giuliatti Winter et al. [Giuliatti Winter, S.M, Murray, C.D., Gordon, M. Perturbations to Saturn's F-ring strands at their closest approach to Prometheus. Plan. Space Sciences, 48, 817, 2000.] analysed the behaviour of these four strands at closest approach with the satellite Prometheus. Their work suggests that Prometheus can induce the ring particles to scatter in the direction of the planet, thus increasing the population of small bodies in this region.In this work we analysed the effects of Prometheus on the radial structure of Saturn's F ring during the Voyager and early Cassini epochs. Our results show that at Voyager epoch Prometheus, and also Pandora, had a negligible influence in the strands. However, during the Cassini encounter Prometheus could affect the strands significantly, scattering particles of the inner strand in the direction of the planet. This process can contribute to the replenishment of material in the region between the F ring and the A ring, where two rings have recently been discovered [Porco, C. et al. Cassini imaging science. Initial results on Saturn's rings and small Satellites. Science, 307, 1226, 2005].We also analyse the behaviour of undetected satellites under the effects of these two satellites by computing the Lyapunov Characteristic Exponent. Our results show that these satellites have a chaotic behaviour which leads to a much more complex scenario. The new satellite S/2004 S6 also presents a chaotic behaviour with can alter the dynamic of the system, since this satellite crosses the orbit of the strands. (C) 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saturn's F ring, which lies 3,400 km beyond the edge of the main ring system, was discovered by the Pioneer 11 spacecraft(1) in 1979. It is a narrow, eccentric ring which shows an unusual 'braided' appearance in several Voyager 1 images' obtained in 1980, although it appears more regular in images from Voyager 2 obtained nine months later(3). The discovery of the moons Pandora and Prometheus orbiting on either side of the ring provided a partial explanation for some of the observed features(4). Recent observations of Prometheus(5,6) by the Hubble Space Telescope show, surprisingly, that it is lagging behind its expected position by similar to 20 degrees. By modelling the dynamical evolution of the entire Prometheus-F ring-Pandora system, we show here that Prometheus probably encountered the core of the F ring in 1994 and that it may still be entering parts of the ring once per orbit. Collisions with objects in the F ring provide a plausible explanation for the observed lag and imply that the mass of the F ring is probably less than 25% that of Prometheus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Image photometry reveals that the F ring is approximately twice as bright during the Cassini tour as it was during the Voyager flybys of 1980 and 1981. It is also three times as wide and has a higher integrated optical depth. We have performed photometric measurements of more than 4800 images of Saturn's F ring taken over a 5-year period with Cassini's Narrow Angle Camera. We show that the ring is not optically thin in many observing geometries and apply a photometric model based on single-scattering in the presence of shadowing and obscuration, deriving a mean effective optical depth tau approximate to 0.033. Stellar occultation data from Voyager PPS and Cassini VIMS validate both the optical depth and the width measurements. In contrast to this decades-scale change, the baseline properties of the F ring have not changed significantly from 2004 to 2009. However, we have investigated one major, bright feature that appeared in the ring in late 2006. This transient feature increased the ring's overall mean brightness by 84% and decayed with a half-life of 91 days. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work it is proposed to do a revision on some studies on the dynamics of the Prometheus-Pandora system. In special, those studies that deal with anomalous behaviours observed on its components, identi ed as angular lags in these satellite`s orbits. Initially, it is presented a general description, contextualising the main characteristics of this system. The main publications related to this subject are analised and commented, in chronological order, showing the advances made in the knowledge of such dynamics. An analysis of the initial conditions, used by Goldreich e Rappaport (2003a ,b) e Cruz (2004), obtained through observations made by the Voyager 1 and 2 spacecrafts and by the Hubble space telescope, it is made in order to try to reproduce their results. However, no clear conclusion of the values used were found. The tests addopted in the analysis are from Cruz (2004), which reproduced the results and o ered a new explanation on the origin of the observed angular lags. The addopetd methodology involves the numerical integration of the equations of motion of the system, including the zonal harmonics J2, J4 and J6 of Saturn's gravitational potential. A fundamental consideration in this study is the use of geometric elements instead of osculating elements. It was found the set of initial data that best reproduces the results from Goldreich e Rappaport (2003a, b) and Cruz (2004)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)