6 resultados para VISCOPLASTIC HETEROGENEOUS MATERIALS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: In this study, we evaluated the results of spontaneous osteoneogenesis of the frontal sinus with autogenous bone plug versus obliteration with heterogeneous (human) bone in monkeys (Cebus apella).Materials and Methods: Eight young adult male C apella monkeys underwent an ostectomy of the anterior wall of the frontal sinus, removal of the sinus mucosa, and inner decortication of the bony walls and then were divided into 2 groups of 4 each, as follows. Group I monkeys underwent obliteration of the nasofrontal ducts with a free segment of frontallis muscle and corticocancellous heterogeneous bone, followed by full obliteration of the sinus with corticocancellous heterogeneous bone (Dayton Regional Tissue Bank, Dayton, OH). Group II monkeys underwent obliteration of the nasofrontal ducts with a frontal muscle segment and tibial autogenous bone plug, without full obliteration of the frontal sinus. In all animals, the sinus anterior wall was repositioned and fixed with 1.0 plate and screws. The monkeys were killed after 180 days, and routine laboratory procedures were followed for hematoxylin-eosin staining and histologic evaluation of the specimens.Results: the 2 studied techniques were both effective in obliterating the frontal sinus with newly formed bone. The nasofrontal ducts were obliterated by new bone formation or fibrous tissue (1 animal only).Conclusions: Both methods used for frontal sinus obliteration were effective; the heterogeneous bone (human bone) was well tolerated and presented low antigenicity. The nasofrontal duct obliteration with autogenous muscle associated with autogenous tibial bone (group II) or with heterogeneous bone (group I) was effective, isolating the frontal sinus from the nasal cavity. The spontaneous obliteration resulted, in the period analyzed, in earlier bone maturation compared with the obliteration by heterogeneous bone. (C) 2003 American Association of Oral and Maxillofacial Surgeons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of material removal and the interactions among scratches performed in ceramic materials were investigated using acoustic emission signals, and scanning electron microscopy, in scratching experiments. Several testing conditions were used to produce different types of removing mechanism on a glass as well as on a polycrystalline alumina sample composed by heterogeneous grain size. It is known that the material removing process on a polycrystalline ceramic involves intergranular microfracture and grain dislodgement, unlike the chipping produced by the extension of lateral cracks in non-granular materials, such as glass. Distinct settings for velocities, loads, and two types of diamond indenter were tested. The material removal was carried out by three different methods of scratching: single passes, repeated overlapping passes, and parallel scratches. As a general result, there was a clear relationship between the acoustic emission signals and the damage intensity occurred in the material removal. More specifically, there were differences in the acoustic emission signal levels in the scratches made on the alumina and on the glass owing to the material removal mechanisms associated with the structure of these materials. A gradual increase in the acoustic emission levels was observed when the number of repeated passes was increased as a result of the damage accumulation process followed by severe material removal. It was also noticed that the acoustic emission signals were capable of reflecting the interactions between two parallel scratches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review focuses on the heterogeneous photocatalytic treatment of organic dyes in air and water. Representative studies spanning approximately three decades are included in this review. These studies have mostly used titanium dioxide (TiO2) as the inorganic semiconductor photocatalyst of choice for decolorizing and decomposing the organic dye to mineralized products. Other semiconductors such as ZnO, CdS, WO3, and Fe2O3 have also been used, albeit to a much smaller extent. The topics covered include historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H2O2, ozonation, UV/O3, Fenton and photo-Fenton reactions), visible light-induced dye decomposition by sensitization mechanism, reaction intermediates and toxicity issues, and real-world process scenarios. © 2008 Elsevier B.V. All rights reserved.