5 resultados para VANADATES

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes a modified sol-gel method for the preparation of V2O5/TiO2 catalysts. The samples have been characterized by N-2 adsorption at 77 K, X-ray Diffractometry (XRD), Scanning Electronic Microscopy (SEM/EDX) and Fourier Transform Infrared Spectroscopy (FT-IR). The surface area increases with the vanadia loading from 24 m(2) g(-1) for pure TiO2 to 87 m(2) g(-1) for 9 wt% of V2O5. The rutile form is predominant for pure TiO2 but becomes enriched with anatase phase when vanadia loading is increased. No crystalline V2O5 phase was observed in the diffractograms of the catalysts. Analysis by SEM showed heterogeneous granulation of particles with high vanadium dispersion. Two species of surface vanadium were observed by FT-IR spectroscopy: a monomeric vanadyl and polymeric vanadates. The vanadyl/vanadate ratio remains practically constant. Ethanol oxidation was used as a catalytic test in a temperature range from 350 to 560 K. The catalytic activity starts around 380 K. For the sample with 9 wt% of vanadia, the conversion of ethanol into acetaldehyde as the main product was approximately 90% at 473 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of V2O5/TiO2 samples was synthesized by sol-gel and impregnation methods with different contents of vanadia. These samples were characterized by x-ray diffraction (XRD), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and electronic paramagnetic resonance (EPR). XRD detected rutile as the predominant phase for pure TiO2 prepared by the sol-gel method. The structure changed to anatase when the vanadia loading was increased. Also, anatase was the predominant phase for samples obtained by the impregnation method. Raman measurements identified two species of surface vanadium: monomeric vanadyl (V4+) and polymeric vanadates (V5+). XPS results indicated that Ti ions were in octahedral position surrounded by oxygen ions. The V/Ti atomic ratios showed that V ions were highly dispersed on the vanadia/titania surface obtained by the sol-gel method. EPR analysis detected three V4+ ion types: two of them were located in axially symmetric sites substituting for Ti4+ ions in the rutile structure, and the third one was characterized by magnetically interacting V4+ ions in the form of pairs or clusters. A partial oxidation of V4+ to V5+ was evident from EPR analysis for materials with higher concentrations of vanadium. (C) 2001 American Vacuum Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroscopy and Electron Paramagnetic Resonance (EPR) studies were performed on a series of V(2)O(5)/TiO(2) catalysts prepared by a modified sol-gel method in order to identify the vanadium species. Two species of surface vanadium were identified by Raman measurements, monomeric vanadyls and polymeric vanadates. Monomeric vanadyls are characterized by a narrow Raman band at 1030 cm(-1) and polymeric vanadates by two broad bands in the region from 900 to 960 cm(-1) and 770 to 850 cm(-1). The Raman spectra do not exhibit characteristic peaks of crystalline V(2)O(5). These results are in agreement with those of X-ray Diffractometry (XRD) and Fourier Transform Infrared (FT-IR) previously reported (C.B. Rodella et al., J. Sol-Gel Sci. Techn., submitted). At least three families of V(4+) ions were identified by EPR investigations. The analysis of the EPR spectra suggests that isolated V(4+) ions are located in sites with octahedral symmetry substituting for Ti(4+) ions in the rutile structure. Magnetically interacting V(4+) ions are also present as pairs or clusters giving rise to a broad and structureless EPR line. At higher concentration of V(2)O(5), a partial oxidation of V(4+) to V(5+) is apparent from the EPR results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of the V(2)O(5)/TiO(2) system were prepared by the sol-gel method and calcined at different temperatures. Surface species of vanadium, their dispersion, as well as the structural evolution of the system were analysed by XRD, Raman, EPR, and XPS techniques. The results of XRD showed the evolution of TiO(2) from anatase phase to rutile. phase. The Raman spectra for calcination temperatures up to 500 degreesC showed a good dispersion of vanadium over titania in the form of monomeric vanadyl groups (V(4+)) and polymeric vanadates (V(5+)). At least three families of V4+ ions were identified by EPR investigations. Two kinds of isolated V(4+) species are placed in sites of octahedral symmetry, substituting Ti(4+) in the rutile phase. The third is formed by pairs of V(4+) species on the surface of titania. Above 500 degreesC part of superficial V(4+) is inserted into the,matrix of titania and part is oxidized to V(5+). The XPS results showed that the V/Ti ratio rises with increasing calcination temperature, indicating a smaller dispersion of vanadium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes a modified sol-gel method for the preparation of V 2O 5/TiO 2 catalysts. The samples have been characterized by N 2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m 2 g -1, for pure TiO 2, to 87 m 2 g -1 for 9wt.% of V 2O 5. The rutile form is predominant for pure TiO 2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V 2O 5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.