12 resultados para Unsaturated soil
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The research studies the applicability of two elastoplastic models for the collapse prediction of the lateritic soil profile from Southeastern Brazil. These tropical soils have peculiar geotechnical behavior, due to their mineralogical composition and porous structure coming from intense process of formation. Two elastoplastic models were analyzed: the Barcelona Basic Model (BBM) and another one based on BBM, however developed for tropical soils. Oedometric tests with suction control were performed at three distinct depths of the soil profile. The BBM was not suitable for the upper layer of the soil profile, because BBM considers the compressible behavior of the soil in function of the reduction of the elastoplastic compressibility index with the increase of the matric suction. The model developed for tropical soils showed better suited to the compressible behavior of the soil profile, resulting in good prediction of the collapse potential, mainly by accepting increasing values of the elastoplastic compressibility index of the soil profile with the matric suction rise. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Many models for unsaturated soil have been developed in the last years, accompanying the development of experimental techniques to deal with such soils. The benchmark of the models for unsaturated soil can be assigned to the Barcelona Basic Model (BBM) now incorporated in some codes such as the CODE_BRIGHT. Most of those models were validated considering limited laboratory test results and not much validation is available considering real field problems. This paper presents modeling results of field plate load tests performed under known suction on a lateritic unsaturated soil. The required input data were taken from laboratory tests performed under suction control. The modeling nicely reproduces field tests allowing appreciating the influence of soil suction on the stress-settlement curve. In addition, wetting induced or collapse settlements were calculated from field tests and were nicely duplicated by the numerical analysis performed.
Resumo:
Fractal geometry would appear to offer promise for new insight on water transport in unsaturated soils, This study was conducted to evaluate possible fractal influence on soil water diffusivity, and/or the relationships from which it arises, for several different soils, Fractal manifestations, consisting of a time-dependent diffusion coefficient and anomalous diffusion arising out of fractional Brownian motion, along with the notion of space-filling curves were gleaned from the literature, It was found necessary to replace the classical Boltzmann variable and its time t(1/2) factor with the basic fractal power function and its t(n) factor, For distinctly unsaturated soil water content theta, exponent n was found to be less than 1/2, but it approached 1/2 as theta approached its sated value, This function n = n(theta), in giving rise to a time-dependent, anomalous soil water diffusivity D, was identified with the Hurst exponent H of fractal geometry, Also, n approaching 1/2 at high water content is a behavior that makes it possible to associate factal space filling with soil that approaches water saturation, Finally, based on the fractally interpreted n = n(theta), the coalescence of both D and 8 data is greatly improved when compared with the coalescence provided by the classical Boltzmann variable.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Observed deviations from traditional concepts of soil-water movement are considered in terms of fractals. A connection is made between this movement and a Brownian motion, a random and self-affine type of fractal, to account for the soil-water diffusivity function having auxiliary time dependence for unsaturated soils. The position of a given water content is directly proportional to t(n), where t is time, and exponent n for distinctly unsaturated soil is less than the traditional 0.50. As water saturation is approached, n approaches 0.50. Macroscopic fractional Brownian motion is associated with n < 0.50, but shifts to regular Brownian motion for n = 0.50.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabalho trata sobre a calibração de um aparelho baseado na técnica TDR para estudos do fluxo de água em solo não saturado, com base na medição indireta da umidade, sucção matricial (ψ) e condutividade hidráulica não saturada k(ψ), num perfil de solo inalterado. Isto é possível mediante ensaios de laboratório decorrentes da mecânica de solos tradicional e não saturada, a partir de amostras indeformadas retiradas a diferentes profundidades durante a construção de um poço, onde foram instaladas as sondas do TDR. Dos ensaios, obtiveram-se equações polinomiais para relacionar o comportamento da variação do período de tempo do pulso eletromagnético percorrido pela sonda TDR com a variação da umidade do solo e modelos de van Genuchten (1980) para relacionar a umidade com (ψ) e k(ψ). Os resultados mostraram que, para a calibração da umidade neste tipo de solos, um ajuste polinomial de quarto grau se apresenta como melhor alternativa em relação às expressões existentes em lugares onde foram derivadas estas teorias. Adicionalmente, se observou, que as maiores variações de (ψ) e k(ψ). ocorrerão entre a saturação e 10% de umidade devido à peculiaridade da curva de retenção. Finalmente, a presente calibração se apresenta como um expediente útil e prático para estudos hidrodinâmicos de solos não saturados. Palavras-chave: calibração, reflectômetro, teor de umidade, solo não saturado.
Resumo:
Pós-graduação em Engenharia Civil e Ambiental - FEB
Resumo:
The problems caused by the residual effluents of wine distilleries for alcohol production are well known. The effluent effects in soil and groundwater are being researched in an area with sugar cane culture which receives, yearly, vinasse by dispersion. Samples are being collected from the soil, the groundwater and the existing creeks in the area. Four sub-areas are being monitored separately with a vinasse application of 300 m 3/ha year. Experimentation periods in each area have been 0, 5, 10 and 15 years. In the unsaturated zone, samples are being collected at depths of 25, 75 and 150 cm. The chemical analyses include macro and micro nutrients, organic matter and pH. Physical analyses give the soil water retention, hydraulic conductivity and soil particle distribution. These measurements permit the evaluation of nitrogen absorption and fertility changes of the soil. A tendency for the maintenance of soil fertility can be observed but with an elevation of nitrate concentration in groundwater.
Resumo:
The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)