55 resultados para Uncertainty propagation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Three sets of non-singular canonical variables for the rotational motion are analyzed. These sets are useful when the angle between z-axis of a coordinate system fixed in artificial satellite ( here defined by the directions of principal moments of inertia of the satellite) and the rotational angular momentum vector is zero or when the angle between Z-inertial axis and rotational angular momentum vector is zero. The goal of this paper is to compare all these sets and to determine the benefits of their uses. With this objective, the dynamical equations of each set were derived, when mean hamiltonian associate with the gravity gradient torque is included. For the torque-free rotational motion, analytical solutions are computed for symmetrical satellite for each set of variables. When the gravity gradient torque is included, an analytical solution is shown for one of the sets and a numerical solution is obtained for one of the other sets. By this analysis we can conclude that: the dynamical equation for the first set is simple but it has neither clear geometrical nor physical meaning; the other sets have geometrical and physical meaning but their dynamical equations are more complex.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a method for calculating the power flow in distribution networks considering uncertainties in the distribution system. Active and reactive power are used as uncertain variables and probabilistically modeled through probability distribution functions. Uncertainty about the connection of the users with the different feeders is also considered. A Monte Carlo simulation is used to generate the possible load scenarios of the users. The results of the power flow considering uncertainty are the mean values and standard deviations of the variables of interest (voltages in all nodes, active and reactive power flows, etc.), giving the user valuable information about how the network will behave under uncertainty rather than the traditional fixed values at one point in time. The method is tested using real data from a primary feeder system, and results are presented considering uncertainty in demand and also in the connection. To demonstrate the usefulness of the approach, the results are then used in a probabilistic risk analysis to identify potential problems of undervoltage in distribution systems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We study the propagation of waves in an elastic tube filled with an inviscid fluid. We consider the case of inhomogeneity whose mechanical and geometrical properties vary in space. We deduce a system of equations of the Boussinesq type as describing the wave propagation in the tube. Numerical simulations of these equations show that inhomogeneities prevent separation of right-going from left-going waves. Then reflected and transmitted coefficients are obtained in the case of localized constriction and localized rigidity. Next we focus on wavetrains incident on various types of anomalous regions. We show that the existence of anomalous regions modifies the wavetrain patterns. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x(+) = 0 to x(+) > 0. It corresponds to the definition of the time ordering operation in the light front time x(+). We calculate the light-front Green's function for 2 interacting bosons propagating forward in x(+). We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The performance of the NORAD models for near Earth satellites (SGP, SGP4, SGP8) using two Brazilian flying satellites, SCD-1 and SCD-2, and the Chinese-Brazilian satellite CBERS-1 is compared. The achievable accuracy of such models is compared against the predicted 2-lines elements set for the satellites. Every week an updated fresh set of 2-lines elements for these satellites is made available through the Internet. About ten years of observations of the SCD-1 satellite are available and therefore solar activity influences on the orbit can be analyzed. Data are selected considering also orbital (for CBERS-1) and attitude (for SCD-2) maneuvers - (C) 2002 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
A derivation from first principles is given of the energy-time uncertainty relation in quantum mechanics. A canonical transformation is made in classical mechanics to a new canonical momentum, which is energy E, and a new canonical coordinate T, which is called tempus, conjugate to the energy. Tempus T, the canonical coordinate conjugate to the energy, is conceptually different from the time t in which the system evolves. The Poisson bracket is a canonical invariant, so that energy and tempus satisfy the same Poisson bracket as do p and q. When the system is quantized, we find the energy-time uncertainty relation DELTAEDELTAT greater-than-or-equal-to HBAR/2. For a conservative system the average of the tempus operator T is the time t plus a constant. For a free particle and a particle acted on by a constant force, the tempus operators are constructed explicitly, and the energy-time uncertainty relation is explicitly verified.