84 resultados para Ultrasonic velocity

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An ultrasonic density-measurement cell is experimentally characterized as a function of temperature. The measurement of propagation velocity and density of several liquids is performed in the 15 degrees C-40 degrees C temperature range. Results are compared to the tabulated values in the case of distilled water, showing an accuracy of 0.07% for the propagation velocity. The cell was tested with distilled water, alcohol, and homogenized milk, and density values are compared to those obtained with a pycnometer, showing 0.2% accuracy in density measurement for stabilized temperature and 0.4% accuracy under thermal gradient conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Measurements of ultrasonic attenuation and velocity in milk and low concentration water-in-oil (W/O) emulsion were conducted, using a measurement cell with a double-element transducer that eliminates diffraction losses. The milk is characterized by the attenuation coefficient, while in the case of water-in-oil emulsions, the characterization is best represented by the propagation velocity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last 30 years several studies have been made to understand the relaxation mechanisms of the hydrogen atoms present in transition metals and their alloys. In this work, we observed the stress-induced ordering of hydrogen atoms around the interstitial oxygen atoms near the niobium matrix atoms. We studied this relaxation process by measuring the attenuation of longitudinal ultrasonic waves. These measurements were made in Nb1.0%Zr polycrystalline alloys at 10 and 30 MHz, pure and doped with 0.7 and 4.2 at.% hydrogen. The results revealed a thermally activated relaxation structure around 202 K and 235 K for 10 MHz and 30 MHz respectively. This relaxation structure increases with increasing hydrogen concentration. © 1994.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of this research was to determine the density distribution in medium density fiberboard (MDF), manufactured with polyurethane derived from castor oil using, ultrasonic wave technique. The equipment used in this test is Steinkamp BP7 with plan and exponential transducers, both with 45 kHz frequencies, located in several zones on the plate in order to determine wave ultrasonic velocity. The Pinus caribaea and Eucalyptus grandis fiberboard were manufactured in the quality control and products development laboratory of Duratex with 500 mm long, 500 mm large, 8 and 15 mm of thickness. Three MDF for each fiber specimen and thickness were fabricated, totalizing twelve plates tested. The MDF were produced with 5% polyurethane addition, in temperature of 160°C, tension press of 53 bars and addition of moisture content of 12%. For determination of fiberboard density, samples were extracted from the same zones where the wave ultrasonic velocity was determined. In this case, DAX-Ray equipment was used. Statistical analysis shows good agreement with wave ultrasonic velocity and the density profile, validating the application of non-destructive technique in order to determine the density profile of MDF's.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the use of a large-aperture PVDF receiver in the measurement of liquid density and composite material elastic constants. The density measurement of several liquids is obtained with accuracy of 0.2% using a conventional NDE emitter transducer and a 70-mm-diameter, 52-mu m P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants is based on the phase velocity measurement. Diffraction can lead to errors around 1% in velocity measurement when using alternatively the conventional pair of ultrasonic transducers (1-MHz frequency and 19-mm-diameter) operating in through-transmission mode, separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz, 19-mm-diameter transducers. Nevertheless, the dispersion at 10 MHz can result in errors of about 0.5%, when measuring the velocity in composite materials. The use of an 80-mm diameter, 52-mu m-thick PVDF membrane receiver practically eliminates the diffraction effects in phase velocity measurement. The elastic constants of a carbon fiber reinforced polymer were determined and compared with the values obtained by a tensile test. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ultrasonic densitometer is experimentally characterized as a function of temperature. The measurement of propagation velocity and density of several liquids is performed in the 15 to 40°C temperature range. Results are compared to tabulated values in the case of distilled water, showing accuracy of 0.07% for the propagation velocity. Density values are compared to those obtained with a pycnometer, showing 0.2% accuracy in density measurement for stabilized temperature and 0.4% under thermal gradient conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the use of a large aperture PVDF receiver in the measurement of density of liquids and elastic constants of composite materials. The density measurement of several liquids is obtained with the accuracy of less than 0.2% using a conventional NDT emitter transducer and a 70-mm diameter, 52-μm P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants of composite materials is based in the measurement of phase velocity. It is shown that the diffraction can lead to errors around 1% in the velocity measurement when using a pair of ultrasonic transducers (1MHz and 19mm diameter) operating in transmission-reception mode separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz transducers. On the other hand, the dispersion at 10 MHz can result in errors of about 0.5%, measuring the velocity in composite materials. The use of an 80-mm diameter, 52-μm thick PVDF membrane receiver allows measuring the phase velocity without the diffraction effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing air movement over poultry by using fans (ventilation) has become an accepted means of reducing environmental heat stress over the last several years. The purpose of this study was to evaluate the effect of air velocity and exposure time to ventilation on body surface and rectal temperature of broiler chickens. Male broiler chickens aged 36-42 days were placed in individual wire cages and exposed to five different air velocities (5.7, 4.2, 3.1, 2.4, or 1.8 m/sec). Throughout the experiment head, back, leg, and rectal temperatures were monitored every 10 min during a 30-min period for each air velocity. The data showed that exposure time to the wind affected (P<.05) leg and body temperature, with a rapid reduction being observed during the first 10 min. There was a reduction in leg temperature with air velocity of 2 m/sec; however, air velocity lower than 4.5 m/sec was not effective in decreasing head and back temperature. The results suggest that air velocity of 2 m/sec, in air temperature of 29 degrees C, improves heat loss in the birds. The data also indicate that exposure time to ventilation seems to be a critical point in the maintenance of bird thermal homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a cell to measure dynamic viscosity of liquids using ultrasonic wave mode conversion from longitudinal to shear wave. The strategy used to obtain the viscosity is based on the measurement of the complex reflection coefficient of shear waves at a solid-liquid interface. Viscosity measurements of automotive oils (SAE90 and SAE140) were obtained in the frequency range from 1 to 10 MHz. These results are compared with the Maxwell model with two relaxation times, showing the dependency of viscosity with frequency. Several parameters affecting viscosity measurements, including the solid material properties, liquid viscosity, and operating frequency are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents recent improvements in a density measurement cell with a double-element transducer that can eliminate diffraction effects. A new mechanical design combined with the use of more appropriate materials has resulted in better parallelism between interfaces, more robust assembly, and chemical resistance. A novel method of signal processing, named energy method, is introduced to obtain the reflection coefficient, reducing sensitivity to noise and improving accuracy. The measurement cell operation is verified both theoretically, using an acoustic wave propagation model, and experimentally, using homogeneous liquids with different densities. The accuracy in the density measurement is 0.2% when compared with the measurements made with a pycnometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of liquid sample properties and signal analysis techniques. The sensor performance in non-ideal conditions is studied, considering the thicknesses of adhesive and metallization layers, and the effect of residue of liquid sample which can impregnate on the sample chamber surfaces. These layers are taken into account in the model, and their effects are compensated to reduce the error on density measurement. The results show the contribution of residue layer thickness to density error and its behavior when two signal analysis methods are used. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper was to develop a model for calculating the economical flow diameter and velocity, by obtaining the economical diameter, using Swamee's friction factor equation, by minimizing the total annual cost. The application of the model to a regular supply condition showed that the diameter of the actual condition, 250 mm, compared with the diameter calculated by the mode, at the same tariff as that applied to the property ( ground), 284.1 mm, involved the necessity to generate, transmit, and distribute extra electrical energy, due to the higher load loss caused by the original diameter, approximately 30800 kWh/year. This means that in one year, the consumer would spend R$2,804.00 more on pumping cost alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To compare the efficiency of an Aeroneb Pro vibrating plate and an Atomisor MegaHertz ultrasonic nebulizer for providing ceftazidime distal lung deposition.Design: In vitro experiments. One gram of cetazidime was nebulized in respiratory circuits and mass median aerodynamic diameter of particles generated by ultrasonic and vibrating plate nebulizers was compared using a laser velocimeter. In vivo experiments. Lung tissue concentrations and extrapulmonary depositions were measured in ten anesthetized ventilated piglets with healthy lungs that received 1 g of ceftazidime by nebulization with either an ultrasonic (n = 5), or a vibrating plate (n = 5) nebulizer.Setting: A two-bed Experimental Intensive Care Unit of a University School of Medicine.Intervention: Following sacrifice, 5 subpleural specimens were sampled in dependent and nondependent lung regions for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography.Measurements and results: Mass median aerodynamic diameters generated by both nebulizers were similar with more than 95% of the particles between 0.5 and 5 mu m. Lung tissue concentrations were 553 +/- 123 [95% confidence interval: 514-638] mu g g(-1) using ultrasonic nebulizer, and 452 +/- 172 [95% confidence interval: 376-528] mu g g(-1) using vibrating plate nebulizers (NS). Extrapulmonary depositions were, respectively, of 38 +/- 5% (ultrasonic) and 34 +/- 4% (vibrating plate) (NS).Conclusions: Vibrating plate nebulizer is comparable to ultrasonic nebulizers for ceftazidime nebulization. It may represent a new attractive technology for inhaled antibiotic therapy.