7 resultados para Ultracold quantum gases

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider three-body systems in two dimensions with zero-range interactions for general masses and interaction strengths. The momentum-space Schrödinger equation is solved numerically and in the Born-Oppenheimer (BO) approximation. The BO expression is derived using separable potentials and yields a concise adiabatic potential between the two heavy particles. The BO potential is Coulomb-like and exponentially decreasing at small and large distances, respectively. While we find similar qualitative features to previous studies, we find important quantitative differences. Our results demonstrate that mass-imbalanced systems that are accessible in the field of ultracold atomic gases can have a rich three-body bound state spectrum in two-dimensional geometries. Small light-heavy mass ratios increase the number of bound states. For 87Rb-87Rb-6Li and 133Cs- 133Cs-6Li we find respectively three and four bound states. © 2013 IOP Publishing Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the trajectory of Efimov states for a trapped three-boson system when the two-body scattering length a is changed. We show that these states follow the route virtual-bound-continuum resonance state when a is varied, respectively, from large positive to negative values. For a < 0, we include the triatomic continuum resonance effect to extend the three-body recombination length for trap temperatures greater than zero. For a > 0, we predict trimer binding energies based on the recombination length and the two-body scattering length.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)