69 resultados para UNIVERSALITY
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The occurrence of a new limit cycle in few-body physics, expressing a universal scaling function relating the binding energies of two successive tetramer states, is revealed by considering a renormalized zero-range two-body interaction in bound state of four identical bosons. The tetramer energy spectrum is obtained by adding a boson to an Efimov bound state with energy B-3 in the unitary limit (for zero two-body binding energy or infinite two-body scattering length). Each excited N-th tetramer energy B-4((N)) is shown to slide along a scaling function as a short-range four-body scale is changed, emerging from the 3+1 threshold for a universal ratio B-4((N))/B-3 = 4.6, which does not depend on N. The new scale can also be revealed by a resonance in the atom-trimer recombination process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Universal aspects of few-body systems will be reviewed motivated by recent interest in atomic and nuclear physics. The critical conditions for the existence of excited states in three-body systems with two-identical particles will be explored. In particular, we consider halo nuclei that can be modeled as three-body nuclear systems, with two halo neutrons and a core. In this context, we also discuss the low-energy neutron-C-19 elastic scattering, near the conditions for the appearance of an Efimov state.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents an approximate universality displayed by thermally stimulated depolarization currents ruled by stretched exponential relaxations when properly re-scaled. A visually perfect universality occurs especially when the energy and the heating rate are varied. It becomes somewhat poorer when the frequency factor or the stretched exponent changes. Empirical relations between the half widths and other pertinent parameters are given.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the low-energy universality observed in three-body models through a scale-independent approach. From the already estimated infinite number of three-body excited energy states, which happen in the limit when the energy of the subsystem goes to zero, we are able to identify the lower energies of the helium trimers as possible examples of Thomas-Efimov states. By considering this example, we illustrate the usefulness of a scaling function, which we have defined. The approach is applied to bosonic systems of three identical particles, and also to the case where two kinds of particles are present.
Resumo:
The scale invariance manifested by the weakly-bound Efimov states implies that all the Efimov spectrum can be merged in a single scaling function. By considering this scaling function, the ratio between two consecutive energy levels, E3 (N+1) and E3 (N), can be obtained from a two-body low-energy observable (usually the scattering length a), given in units of the three-body energy level N. The zero-ranged scaling function is improved by incorporating finite range corrections in first order of r0/a (r0 is the potential effective range). The critical condition for three-identical bosons in s-wave, when the excited E3 (N+1) state disappears in the 2 + 1 threshold, is given by √E2/E3 (N) ≈ 0.38+0.12(r0/a). © 2012 Springer-Verlag.
Resumo:
We report recent advances on the study of universal weakly bound four-boson states from the solutions of the Faddeev-Yakubovsky equations with zero-range two-body interactions. In particular, we present the correlation between the energies of successive tetramers between two neighbor Efimov trimers and compare it to recent finite range potential model calculations. We provide further results on the large momentum structure of the tetramer wave function, where the four-body scale, introduced in the regularization procedure of the bound state equations in momentum space, is clearly manifested. The results we are presenting confirm a previous conjecture on a four-body scaling behavior, which is independent of the three-body one. We show that the correlation between the positions of two successive resonant four-boson recombination peaks are consistent with recent data, as well as with recent calculations close to the unitary limit. Systematic deviations suggest the relevance of range corrections. © 2012 Springer-Verlag.
Resumo:
We study library classifications criticisms from a poststructuralist and pragmatist point of view that rejects the idea of universality in knowledge organization systems. From this perspective, we analize the seminal texts on library classifications criticisms and conclude that the seek of neutrality in some of these texts is not only an impossible goal but also a contradiction in the representation of different cultures. Therefore, we suggest the commitment with the goals and the recognition of bias in library classifications as an important device for achieving a transcultural ethics in knowledge organization and representation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We demonstrate that for every two-qubit state there is a X-counterpart, i.e., a corresponding two-qubit X-state of same spectrum and entanglement, as measured by concurrence, negativity or relative entropy of entanglement. By parametrizing the set of two-qubit X-states and a family of unitary transformations that preserve the sparse structure of a two-qubit X-state density matrix, we obtain the parametric form of a unitary transformation that converts arbitrary two-qubit states into their X-counterparts. Moreover, we provide a semi-analytic prescription on how to set the parameters of this unitary transformation in order to preserve concurrence or negativity. We also explicitly construct a set of X-state density matrices, parametrized by their purity and concurrence, whose elements are in one-to-one correspondence with the points of the concurrence versus purity (CP) diagram for generic two-qubit states. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Critical exponents that describe a transition from unlimited to limited diffusion for a ratchet system are obtained analytically and numerically. The system is described by a two dimensional nonlinear mapping with three relevant control parameters. Two of them control the non-linearity while the third one controls the intensity of the dissipation. Chaotic attractors appear in the phase space due to the dissipation and considering large non-linearity are characterised by the use of Lyapunov exponents. The critical exponents are used to overlap different curves of average momentum (dynamical variable) onto a single plot confirming a scale invariance. The formalism used is general and the procedure can be extended to different systems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)