9 resultados para Tumor Suppression

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia - IBILCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An essential key to pathogenicity in Yersinia is the presence of a 70 kb plasmid (pYV) which encodes a type-III secretion system and several virulence outer proteins whose main function is to enable the bacteria to survive in the host. Thus, a specific immune response is needed in which cytokines are engaged. The aim of this study was to assess the influence of Yersinia outer proteins (Yops) released by Yersinia pseudotuberculosis on the production of the proinflammatory cytokines, interleukin-12 (IL-12), and tumor necrosis factor alpha (TNF-alpha), and nitric oxide (NO) by murine peritoneal macrophages. To this end, female Swiss mice were infected intravenously with wild-type Y pseudotuberculosis or with mutant strains unable to secrete specific Yops (YopE, YopH, YopJ, YopM, and YpkA). on the 7th, 14th, 21st, and 28th days after infection, the animals were sacrificed and the cytokines and NO were assayed in the peritoneal macrophages culture supernatants. A fall in NO production was observed during the course of infection with all the strains tested, though during the infection with the strains that did not secrete YopE and YopH, the suppression occurred later. There was, in general, an unchanged or sometimes increased production of TNF-alpha between the 7th and the 21st day after infection, compared to the control group, followed by an abrupt decrease on the last day of infection. The IL-12 production was also suppressed during the infection, with most of the strains tested, except with those that did not secrete YopJ and YopE. The results suggest that Yops may suppress IL-12, TNF-alpha, and NO production and that the most important proteins involved in this suppression are YopE and YopH. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WE previously demonstrated that Bothrops jararaca venom (BjV) has an antitumor effect on Ehrlich ascites tumor (EAT) cells and induces an increase of polymorphonuclear leukocytes in early stages of tumor growth. It has been reported that this venom presents an important inflammatory effect when inoculated in animal models and in human snake-bites, and that cytokine levels have been detected in these cases. To evaluate whether the cytokines can be involved with the suppression of the tumoral growth, we evaluate the cytokine profile in the peritoneal cavity of mice inoculated with EAT cells and treated with BjV. Swiss mice were inoculated with EAT cells by the intraperitoneal route and treated with BjV venom (0.4 mg/kg, intraperitoneally), on the 1st, 4th, 7th, 10th, and 13th day. Mice were evaluated for cytokine levels on the 2nd, 5th, 8th, 11th and 14th day. Analysis was performed using an enzyme-linked immunosorbent assay for interleukin (IL)-1α, IL-2, IL-4, IL-6, IL-10, IL-13, and tumor necrosis factor-α (TNF-α) levels in the peritoneal washing supernatant. Results were analyzed statistically by the Kruskal-Wallis and Dunn's tests at the 5% level of significance. We observed that EAT implantation induces IL-6 production on the 11th and 14th days of tumor growth, IL-10 on the 11th day and TNF-α on the 14th day. The treatment with BjV suppresses production of these cytokines. In addition, IL-13 was produced by animals that were inoculated only with venom on the 11th and 14th days, and by the group inoculated with EAT cells and treated with venom on the 2nd and 14th days. Furthermore, we suggest that the IL-6 detected in the present study is produced by the EAT cells and the suppression of its production could be associated with the antitumor effect of BjV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target ofTNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response. © 2011 Carvalho-Sousa, da Silveira Cruz-Machado, Tamura, Fernandes, Pinato, Muxel, Cecon and Markus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)