109 resultados para Treadmill running
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objectives of this study were: a) to determine, in a cross-sectional manner, the effect of aerobic training on the peak oxygen uptake, the intensity at O2peak and the anaerobic threshold (AnT) during running and cycling; and b) to verify if the transference of the training effects are dependent on the analized type of exercise or physiological index. Eleven untrained males (UN), nine endurance cyclists (EC), seven endurance runners (ER), and nine triathletes (TR) were submitted, on separate days, to incremental tests until voluntary exhaustion on a mechanical braked cycle ergometer and on a treadmill. The values of O2peak (ml.kg-1.min-1) obtained in running and cycle ergometer (ER = 68.8 ± 6.3 and 62.0 ± 5.0; EC = 60.5 ± 8.0 and 67.6 ± 7.6; TR = 64.5 ± 4.8 and 61.0 ± 4.1; UN = 43.5 ± 7.0 and 36.7 ± 5.6; respectively) were higher in the group that presented specific training in the modality. The UN group presented the lower values of O2peak, regardless of the type of exercise. This same behavior was observed for the AnT (ml.kg-1.min-1) determined in running and cycle ergometer (ER = 56.8 ± 6.9 and 44.8 ± 5.7; EC = 51.2 ± 5.2 and 57.6 ± 7.1; TR = 56.5 ± 5.1 and 49.0 ± 4.8; UN = 33.2 ± 4.2 and 22.6 ± 3.7; respectively). It can be concluded that the transference of the training effects seems to be only partial, independently of the index (O2peak, IO2peak or AnT) or exercise type (running or cycling). In relation to the indices, the specificity of training seems to be less present in the O2peak than in the IO2peak and the AnT.
Resumo:
The level of stress during acute or chronic exercise is important since higher levels of stress may impair homeostasis. The adrenal gland is an essential stress-responsive organ involved in the hypothalamic-pituitary-adrenal axis. The aim of the study was to analyze the sensitivity of different stress biomarkers of the adrenal gland during acute treadmill running at different intensities. Adult rats performed three 25 min running tests at velocities of 15, 20 and 25 m/min, for determination of maximum lactate steady state (MLSS). After obtaining individual MLSS animals were assigned to two groups: M, sacrificed after 25 minutes of exercise at MLSS, and AM, sacrificed after exercise at 25% above MLSS. For comparison, a control group C was sacrificed at rest. Blood corticosterone concentrations, as well, adrenal gland cholesterol and ascorbic acid concentrations were used as biomarkers. Serum corticosterone concentrations were higher after exercise in both M (1802,74±700,42) and AM (2027,96±724,94) groups when compared C group (467,11±262,12), but were not different as a function of exercise intensity. No difference in adrenal ascorbic acid (M=2,37±0,66; AM=2,11±0,50 and C=2,54±0,53) and cholesterol (M=1,04±0,12; AM=0,91±0,31 and C=1,15±0,40) levels were observed when the three groups were compared. Serum corticosterone concentrations showed to be sensitive to acute treadmill exercise intensity. On the other hand, ascorbic acid and cholesterol concentrations in adrenal were biomarkers not adequate to evaluate exercise stress in rats.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this study was to evaluate the effect of using different mathematical models to describe the relationship between treadmill running speed and time to exhaustion. All models generated a value for an aerobic parameter (critical speed; S(critical)). 35 university students performed 5-7 constant-speed 0%-slope treadmill tests at speeds that elicited exhaustion in similar to 3 min to similar to 10 min. Speed and time data were fitted using 3 models: (1) a 2-parameter hyperbolic model; (2) a 3-parameter hyperbolic model; and (3) a hybrid 3-parameter hyperbolic + exponential model. The 2-parameter model generated values for S(critical) (mean (+/- SD): 186 +/- 33 m.min(-1)) and anaerobic distance capacity (ADC; 251 +/- 122 m) with a high level of statistical certainty (i.e., with small SEEs). The 3-parameter models generated parameter estimates that were unrealistic in magnitude and/or associated with large SEEs and little statistical certainty. Therefore, it was concluded that, for the range of exercise durations used in the present study, the 2-parameter model is preferred because it provides a parsimonious description of the relationship between velocity and time to fatigue, and it produces parameters of known physiological significance, with excellent confidence.
Resumo:
The higher concentration during exercise at which lactate entry in blood equals its removal is known as maximal lactate steady state (MLSS) and is considered an important indicator of endurance exercise capacity. The aim of the present study was to determine MLSS in running rats. Adult male Wistar sedentary rats, which were selected and adapted to treadmill running for three weeks, were used. After becoming familiarized with treadmill running, the rats were submitted to five exercise tests at 15, 20, 25, 30 and 35 m/min velocities. The velocity sequence was distributed at random. Each test consisted of continuous running for 25 min at one velocity or until the exhaustion. Blood lactate was determined at rest and each 5 min of exercise to find the MLSS. The running rats presented MLSS at the 20 m/min velocity, with blood lactate of 3.9±1.1 mmol/L. At the 15 m/min velocity, the blood lactate also stabilized, but at a lower concentration (3.2±1.1 mmol/L). There was a progressive increase in blood lactate concentration at higher velocities, and some animals reached exhaustion between the 10 th and 25 th minute of exercise. These results indicate that the protocol of MLSS can be used for determination of the maximal aerobic intensity in running rats.
Resumo:
The aim of this study was to validate a non-invasive protocol to determine aerobic and anaerobic capacity of treadmill running rats. Thirteen male Wistar rats (90 days old) were submitted to 4 exercise tests, consisting of running at 25, 30, 35 and 40 m min-1, continuously until exhaustion. For the critical velocity (CV) and anaerobic running capacity (ARC) estimations, the hyperbolic curve (velocity versus time to exhaustion (tlim)) was linearized to V= CV+ARC/tlim, where the CV and ARC were linear and slope coefficients, respectively. In order to verify if the CV was the maximal aerobic intensity, the rats were submitted to the maximal lactate steady state test (MLSS) composed of three 25-minute tests of continuous running trials at 15, 20 and 25 m min-1, with blood collection every 5 minutes. The CV was obtained at 22.8±0.7 m min-1 and the ARC, at 26.80±2.77 m. The MLSS was observed at 20m min-1, with blood lactate 3.84 ± 0.31 mmol L-1. There was a progressive increase in lactate concentration at 25 m min-1. The CV and MLSS were different, but presented a high and significant correlation (r=0.81). These results indicate that the non-invasive protocol can be used for physical evaluation of aerobic running rats, but the ARC should still be further investigated.
Resumo:
Purpose: The aim of this study was to verify whether there is an association between anaerobic running capacity (ARC) values, estimated from two-parameter models, and maximal accumulated oxygen deficit (MAOD) in army runners. Methods: Eleven, trained, middle distance runners who are members of the armed forces were recruited for the study (20 ± 1 years). They performed a critical velocity test (CV) for ARC estimation using three mathematical models and an MAOD test, both tests were applied on a motorized treadmill. Results: The MAOD was 61.6 ± 5.2 mL/kg (4.1 ± 0.3 L). The ARC values were 240.4 ± 18.6 m from the linear velocity-inverse time model, 254.0 ± 13.0 m from the linear distance-time model, and 275.2 ± 9.1 m from the hyperbolic time-velocity relationship (nonlinear 2-parameter model), whereas critical velocity values were 3.91 ± 0.07 m/s, 3.86 ± 0.08 m/s and 3.80 ± 0.09 m/s, respectively. There were differences (P < 0.05) for both the ARC and the CV values when compared between velocity-inverse time linear and nonlinear 2-parameter mathematical models. The different values of ARC did not significantly correlate with MAOD. Conclusion: In conclusion, estimated ARC did not correlate with MAOD, and should not be considered as an anaerobic measure of capacity for treadmill running. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective effects against muscle fatigue and ultrastructural damages, preventing or reducing the loss in mechanical muscle function after running. Subjects were tested before and after IERT protocol for maximal isometric, concentric and eccentric isokinetic knee extensor strength (60 and 180 s-1). In a second session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180 s-1, or served as controls (n = 8). The effects of acute running-induced fatigue and training on isokinetic and isometric peak torque, and rate of force development (RFD) were investigated. Before IERT, running-induced eccentric torque loss at 180 s-1 was -8 %, and RFD loss was -11 %. Longitudinal IERT led to reduced or absent acute running-induced losses in maximal IERT torque at 180 s-1 (+2 %), being significantly reduced compared to before IERT (p < 0.05), however, RFD loss remained at -11 % (p > 0.05). In conclusion, IERT yields a reduced strength loss after high-intensity running workouts, which may suggest a protective effect against fatigue and/or morphological damages. However, IERT may not avoid reductions in explosive muscle actions. In turn, this may allow more intense training sessions to be performed, facilitating the adaptive response to running training. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
This study examined the influence of different speed increments during treadmill exercise tests on peak treadmill speed (Vpeak) and its relationship with a 1-h treadmill running performance. 18 male recreational and amateur runners (10-km running pace: 10–15 km·h−1) performed, in an alternate order, 3 continuous incremental exercise tests with different speed increments (0.5, 1.0 and 2.0 km·h−1) on a motorized treadmill to determine Vpeak. Thereafter they undertook a 1-h time trial on a treadmill. Vpeak was determined as either (a) the highest speed that could be maintained for a complete minute (Vpeak-60 s), (b) the speed of the last complete stage (Vpeak-C), or (c) the speed of the last complete stage added to the product of the speed increment and the completed fraction of the incomplete stage (Vpeak-P). The Vpeak values were highly influenced by the different speed-incremented rates and the Vpeak-P determined during the protocol comprising speed increments of 1 km·h−1 presented the highest correlation with 1-h time trial performance (r=0.89). The results suggest that a protocol with speed increments comprising 1 km·h−1 and with a 3-min stage duration should be used as standard for the determination of Vpeak to assess aerobic fitness and predict endurance performance in recreational runners. Furthermore, the Vpeak-P should be used for the determination of Vpeak.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo principal deste estudo foi verificar se diferentes formas de indução à acidose interferem na determinação da intensidade do lactato mínimo (LACmin) em corredores de longa distância. Desse modo, 14 corredores de provas fundas do atletismo participaram do estudo. Os atletas realizaram três protocolos: 1) teste incremental em esteira rolante, com incrementos de 1km.h-1 a cada três minutos até a exaustão, para a determinação das intensidades de limiar anaeróbio (OBLA), de limiar aeróbio (Laer), consumo máximo de oxigênio (VO2max) e intensidade de consumo máximo de oxigênio (vVO2max); 2) teste de lactato mínimo em pista de atletismo (LACminp), que consistiu de dois esforços máximos de 233m na pista de atletismo com intervalo de um minuto entre cada repetição, com oito minutos de recuperação passiva, seguido de um teste incremental semelhante ao do protocolo 1; e 3) teste de lactato mínimo em esteira rolante (LACmine), constituído de dois esforços máximos de um minuto e 45 segundos com intervalo de um minuto, na intensidade de 120% da vVO2max, seguido dos mesmos procedimentos do protocolo 2. Foram coletadas amostras de sangue do lóbulo da orelha ao final de cada estágio em todos os protocolos e no 7º minuto de recuperação passiva dos testes de LACmine e LACminp. A análise de variância (ANOVA) mostrou que ocorreram diferenças significativas entre as intensidades de LACmine (13,23 ± 1,78km.h-1) e OBLA (14,67 ± 1,44km.h-1). Dessa maneira, a partir dos resultados obtidos no presente estudo, é possível concluir que a determinação da intensidade correspondente ao lactato mínimo é dependente do protocolo utilizado para a indução à acidose. Além disso, o LACmine subestimou a intensidade correspondente ao OBLA, não podendo ser utilizado para a mensuração da capacidade aeróbia de corredores fundistas.
Resumo:
O objetivo do presente estudo foi comparar as intensidades do ponto de compensação respiratório (PCR), limiar anaeróbio de concentração fixa (OBLA3,5) e limiar anaeróbio de lactato de aumento abrupto lactacidêmico (LAnLAC) determinadas em diferentes ergômetros. Para isso, onze mesatenistas (19±1 anos) realizaram testes incrementais máximos no cicloergômetro, ergômetro de braço, esteira e em teste específico para o tênis de mesa. Durante esses esforços, foram mensuradas as repostas lactacidêmica e respiratória. Na análise intraergômetro, não foram encontradas diferenças significativas entre o PCR, LAnLAC e OBLA3,5 no ergômetro de braço (63,4±4,8W, 66,9±4,5W e 64,5±6,1W, respectivamente), esteira (11,4±0,4km.h-1, 11,3±0,3km.h-1 e 11,1±0,3km.h-1, respectivamente) e teste específico (40,5±1,8bolas.min-1, 42,6±3,6bolas.min-1 e 42,8±5,6bolas.min-1, respectivamente); apenas no cicloergômetro foi verificado menor valor de OBLA3,5 (131,9±6,6W) em relação ao PCR (149,3±4,9W) e o LAnLAC (149,3±4,7W). No entanto, fortes e significativas correlações foram verificadas no teste específico entre todos esses métodos (r entre 0,83 a 0,95), entre o PCR e OBLA3,5 no ergômetro de braço (r=0,78) e entre OBLA3,5 e LAnLAC na esteira (r=0,76). Desse modo, podemos concluir que o PCR, OBLA3,5 e LAnLAC parecem corresponder ao mesmo fenômeno fisiológico, principalmente, no teste específico para o tênis de mesa.
Resumo:
The main purpose of this study was to analyze the effects of exercise mode, training status and specificity on the oxygen uptake ((V)over dot O-2) kinetics during maximal exercise performed in treadmill running and cycle ergometry. Seven runners (R), nine cyclists (C), nine triathletes (T) and eleven untrained subjects (U), performed the following tests on different days on a motorized treadmill and on a cycle ergometer: (1) incremental tests in order to determine the maximal oxygen uptake ((V)over dot O-2max) and the intensity associated with the achievement of (V)over dot O-2max (I(V)over dot O-2max); and (2) constant work-rate running and cycling exercises to exhaustion at I(V)over dot O-2max to determine the effective time constant of the (V)over dot O-2 response (tau(V)over dot O-2). Values for (V)over dotO(2max) obtained on the treadmill and cycle ergometer [R=68.8 (6.3) and 62.0 (5.0); C=60.5 (8.0) and 67.6 (7.6); T=64.5 (4.8) and 61.0 (4.1); U=43.5 (7.0) and 36.7 (5.6); respectively] were higher for the group with specific training in the modality. The U group showed the lowest values for VO2max, regardless of exercise mode. Differences in tau(V)over dot O-2 (seconds) were found only for the U group in relation to the trained groups [R=31.6 (10.5) and 40.9 (13.6); C=28.5 (5.8) and 32.7 (5.7); T=32.5 (5.6) and 40.7 (7.5); U=52.7 (8.5) and 62.2 (15.3); for the treadmill and cycle ergometer, respectively]; no effects of exercise mode were found in any of the groups. It is concluded that tauVO(2) during the exercise performed at I(V)over dot O-2max is dependent on the training status, but not dependent on the exercise mode and specificity of training. Moreover, the transfer of the training effects on tau(V)over dotO(2) between both exercise modes may be higher compared with (V)over dot O-2max.