112 resultados para Transmission lines

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double three-phase transmission lines are analyzed in this paper using a modal transformation model. The main attribute of this model is the use of a single real transformation matrix based on line geometrical characteristics and the Clarke matrix. Because of this, for any line point, the electrical values can be accessed for phase domain or mode domain using the considered transformation matrix and without convolution methods. For non-transposed symmetrical lines the errors between the model results and the exact modes are insignificant values. The eigenvector and eigenvalue analyses for transposed lines search the similarities among the three analyzed transposition types and the possible simplifications for a non-transposed case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eigenvector and eigenvalue analyses are carried out for double three-phase transmission lines, studying the application of a constant and real phase-mode transformation matrix and the errors of this application to mode line models. Employing some line transposition types, exact results are obtained with a single real transformation matrix based on Clarke's matrix and line geometrical characteristics. It is shown that the proposed technique leads to insignificant errors when a nontransposed case is considered. For both cases, transposed and nontransposed, the access to the electrical values (voltage and current, for example) is provided through a simple matrix multiplication without convolution methods. Using this facility, an interesting model for transmission line analysis is obtained even though the nontransposed case errors are not eliminated. The main advantages of the model are related to the transformation matrix: single, real, frequency independent, and identical for voltage and current.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hybrid way mixing time and frequency domain for transmission lines modelling. The proposed methodology handles steady fundamental signal mixed with fast and slow transients, including impulsive and oscillatory behaviour. A transmission line model is developed based on lumped elements representation and state-space techniques. The proposed methodology represents an easy and practical procedure to model a three-phase transmission line directly in time domain, without the explicit use of inverse transforms. The proposed methodology takes into account the frequency-dependent parameters of the line, considering the soil and skin effects. In order to include this effect in the state matrices, a fitting method is applied. Furthermore the accuracy of proposed the developed model is verified, in frequency domain, by a simple methodology based on line distributed parameters and transfer function related to the input/output signals of the lumped parameters representation. In addition, this article proposes the use of a fast and robust analytic integration procedure to solve the state equations, enabling transient and steady-state simulations. The results are compared with those obtained by the commercial software Microtran (EMTP), taking into account a three-phase transmission line, typical in the Brazilian transmission system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows the insertion of corona effect in a transmission line model based on lumped elements. The development is performed considering a frequency-dependent line representation by cascade of pi sections and state equations. Hence, the detailed profile of currents and voltages along the line, described from a non-homogeneous system of differential equations, can be obtained directly in time domain applying numerical or analytic solution integration methods. The corona discharge model is also based on lumped elements and is implemented from the well-know Skilling-Umoto Model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single real transformation matrices are tested as phase-mode transformation matrices of typical symmetrical systems with double three-phase and two parallel double three-phase transmission lines. These single real transformation matrices are achieved from eigenvector matrices of the mentioned systems and they are based on Clarke's matrix. Using linear combinations of the Clarke's matrix elements, the techniques applied to the single three-phase lines are extended to systems with 6 or 12 phase conductors. For transposed double three-phase lines, phase Z and Y matrices are changed into diagonal matrices in mode domain. Considering non-transposed cases of double three-phase lines, the results are not exact and the error analyses are performed using the exact eigenvalues. In case of two parallel double three-phase lines, the exact single real transformation matrix has not been obtained yet. Searching for this exact matrix, the analyses are based on a single homopolar reference. For all analyses in this paper, the homopolar mode is used as the only homopolar reference for all phase conductors of the studied system. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, it is represented by state variables phase a transmission line which parameters are considered frequency independently and frequency dependent. Based on previous analyses, it is used the reasonable number of p circuits and the number of blocks composed by parallel resistor and inductor for reduction of numerical oscillations. It is analyzed the influence of the increase of the RL parallel blocks in the obtained results. The RL parallel blocks are used for inclusion of the frequency influence in the transmission line longitudinal parameter. It is a simple model that is been used by undergraduate students for simulation of traveling wave phenomena in transmission lines. Considering the model without frequency influence, it is included a representation of the corona effect. Some simulations are carried considering the corona effect and they are compared to the results without this phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The restructuring of energy markets to provide free access to the networks and the consequent increase of the number of power transactions has been causing congestions in transmission systems. As consequence, the networks suffer overloads in a more frequent way. One parameter that has strong influence on transfer capability is the reactive power flow. A sensitivity analysis can be used to find the best solution to minimize the reactive power flows and relief, the overload in one transmission line. The proposed methodology consists on the computation of two sensitivities based on the use of the Lc matrix from CRIC (Constant Reactive Implicitly Coupled) power flow method, that provide a set of actions to reduce the reactive power flow and alleviate overloads in the lines: (a) sensitivity between reactive power flow in lines and reactive power injections in the buses, (b) sensitivity between reactive power flow in lines and transformer's taps. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes α and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a general way, in an electric power utility the current transformers (CT) are used to measurement and protection of transmission lines (TL) 1 The Power Line Carriers systems (PLC) are used for communication between electrical substations and transmission line protection. However, with the increasing use of optical fiber to communication (due mainly to its high data transmission rate and low signal-noise relation) this application loses potentiality. Therefore, other functions must be defined to equipments that are still in using, one of them is detecting faults (short-circuits) and transmission lines insulator strings damages 2. The purpose of this paper is to verify the possibility of using the path to the ground offered by the CTs instead of capacitive couplings / capacitive potential transformers to detect damaged insulators, since the current transformers are always present in all transmission lines (TL's) bays. To this a comparison between this new proposal and the PLC previous proposed system 2 is shown, evaluating the economical and technical points of view. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi-phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which does not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show the modal transformation matrix of a hypothetical two-phase obtained with numerical and analytical procedures. It will be shown currents and voltage s at terminals of the line taking into account the use of modal transformation matrices obtained by using numerical and analytical procedures. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a computational model based on lumped elements for the mutual coupling between phases in three-phase transmission lines without the explicit use of modal transformation matrices. The self and mutual parameters and the coupling between phases are modeled using modal transformation techniques. The modal representation is developed from the intrinsic consideration of the modal transformation matrix and the resulting system of time-domain differential equations is described as state equations. Thus, a detailed profile of the currents and the voltages through the line can be easily calculated using numerical or analytical integration methods. However, the original contribution of the article is the proposal of a time-domain model without the successive phase/mode transformations and a practical implementation based on conventional electrical circuits, without the use of electromagnetic theory to model the coupling between phases. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a computational model based on lumped elements for the mutual coupling between phases in transmission lines without the explicit use of modal transformation matrices. The self and mutual parameters and the coupling between phases are modeled using modal transformation techniques. The modal representation is developed from the intrinsic consideration of the modal transformation matrix and the resulting system of time-domain differential equations is described as state equations. Thus, a detailed profile ofthe currents and the voltages through the line can be easily calculated using numerical or analytical integration methods. However, the original contribution of the article is the proposal of a time-domain model without the successive phase/mode transformations and a practical implementation based on conventional electrical circuits, without the use of electromagnetic theory to model the coupling between phases. © 2003-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modal analysis is widely approached in the classic theory of power systems modelling. This technique is also applied to model multiconductor transmission lines and their self and mutual electrical parameters. However, this methodology has some particularities and inaccuracies for specific applications, which are not clearly described in the technical literature. This study provides a brief review on modal decoupling applied in transmission line digital models and thereafter a novel and simplified computational routine is proposed to overcome the possible errors embedded by the modal decoupling in the simulation/ modelling computational algorithm. © The Institution of Engineering and Technology 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An alternative and simplified procedure is described to estimate the longitudinal resistances of transmission lines based on the real-time load profile. This method proposes to estimate the resistance parameters from the synchronized measurements of complex currents and complex voltages at the sending and receiving ends of transmission systems. The synchronized measurements can be in practice obtained using phasor measurement units (PMUs). © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of different degrees of complexity are found in the literature for the estimation of lightning striking distances and attractive radius of objects and structures. However, besides the oversimplifications of the physical nature of the lightning discharge on which most of them are based, till recently the tridimensional structure configuration could not be considered. This is an important limitation, as edges and other details of the object affect the electric field and, consequently, the upward leader initiation. Within this context, the Self-consistent leader initiation and propagation model (SLIM) proposed by Becerra and Cooray is state-of-the-art leader inception and propagation leader model based on the physics of leader discharges which enables the tridimensional geometry of the structure to be taken into account. In this paper, the model is used for estimating the striking distance and attractive radius of power transmission lines. The results are compared with those obtained from the electrogeometric and Eriksson's models. © 2003-2012 IEEE.