13 resultados para Transmission Constraints
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper presents a nonlinear model with individual representation of plants for the centralized long-term hydrothermal scheduling problem over multiple areas. In addition to common aspects of long-term scheduling, this model takes transmission constraints into account. The ability to optimize hydropower exchange among multiple areas is important because it enables further minimization of complementary thermal generation costs. Also, by considering transmission constraints for long-term scheduling, a more precise coupling with shorter horizon schedules can be expected. This is an important characteristic from both operational and economic viewpoints. The proposed model is solved by a sequential quadratic programming approach in the form of a prototype system for different case studies. An analysis of the benefits provided by the model is also presented. ©2009 IEEE.
Resumo:
A mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints are presented. The methodology allows one to find an optimal and reliable transmission network expansion plan using a DC model to represent the electrical network. The security (n-1) criterion is used. The model presented is solved using a genetic algorithm designed to solve the reliable expansion planning in an efficient way. The results obtained for several known systems from literature show the excellent performance of the proposed methodology. A comparative analysis of the results obtained with the proposed methodology is also presented.
Resumo:
This paper presents a mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints in full competitive market, assuming that all generation programming plans present in the system operation are known. The methodology let us find an optimal transmission network expansion plan that allows the power system to operate adequately in each one of the generation programming plans specified in the full competitive market case, including a single contingency situation with generation rescheduling using the security (n-1) criterion. In this context, the centralized expansion planning with security constraints and the expansion planning in full competitive market are subsets of the proposal presented in this paper. The model provides a solution using a genetic algorithm designed to efficiently solve the reliable expansion planning in full competitive market. The results obtained for several known systems from the literature show the excellent performance of the proposed methodology.
Resumo:
In this paper, a hybrid heuristic methodology that employs fuzzy logic for solving the AC transmission network expansion planning (AC-TEP) problem is presented. An enhanced constructive heuristic algorithm aimed at obtaining a significant quality solution for such complicated problems considering contingency is proposed. In order to indicate the severity of the contingency, 2 performance indices, namely the line flow performance index and voltage performance index, are calculated. An interior point method is applied as a nonlinear programming solver to handle such nonconvex optimization problems, while the objective function includes the costs of the new transmission lines as well as the real power losses. The performance of the proposed method is examined by applying it to the well-known Garver system for different cases. The simulation studies and result analysis demonstrate that the proposed method provides a promising way to find an optimal plan. Obtaining the best quality solution shows the capability and the viability of the proposed algorithm in AC-TEP. © Tübi̇tak..
Resumo:
Economic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.
Resumo:
The transmission network planning problem is a non-linear integer mixed programming problem (NLIMP). Most of the algorithms used to solve this problem use a linear programming subroutine (LP) to solve LP problems resulting from planning algorithms. Sometimes the resolution of these LPs represents a major computational effort. The particularity of these LPs in the optimal solution is that only some inequality constraints are binding. This task transforms the LP into an equivalent problem with only one equality constraint (the power flow equation) and many inequality constraints, and uses a dual simplex algorithm and a relaxation strategy to solve the LPs. The optimisation process is started with only one equality constraint and, in each step, the most unfeasible constraint is added. The logic used is similar to a proposal for electric systems operation planning. The results show a higher performance of the algorithm when compared to primal simplex methods.
Resumo:
The Predispatch model (PD) calculates a short-term generation policy for power systems. In this work a PD model is proposed that improves two modeling aspects generally neglected in the literature: voltage/reactive power constraints and ramp rate constraints for generating units. Reactive power constraints turn the PD into a non-linear problem and the ramp rate constraints couple the problem dynamically in time domain. The solution of the PD is turned into a harder task when such constraints are introduced. The dual decomposition/ lagrangian relaxation technique is used in the solution approach for handing dynamic constraints. As a result the PD is decomposed into a series of independent Optimal Power Flow (FPO) sub problems, in which the reactive power is represented in detail. The solution of the independent FPO is coordinated by means of Lagrange multipliers, so that dynamic constraints are iteratively satisfied. Comparisons between dispatch policies calculated with and without the representation of ramp rate constraints are performed, using the IEEE 30 bus test system. The results point-out the importance of representing such constraints in the generation dispatch policy. © 2004 IEEE.
Resumo:
This paper presents a Bi-level Programming (BP) approach to solve the Transmission Network Expansion Planning (TNEP) problem. The proposed model is envisaged under a market environment and considers security constraints. The upper-level of the BP problem corresponds to the transmission planner which procures the minimization of the total investment and load shedding cost. This upper-level problem is constrained by a single lower-level optimization problem which models a market clearing mechanism that includes security constraints. Results on the Garver's 6-bus and IEEE 24-bus RTS test systems are presented and discussed. Finally, some conclusions are drawn. © 2011 IEEE.
Resumo:
A metaheuristic technique for solving the short-term transmission network expansion and reactive power planning problems, at the same time, in regulated power systems using the AC model is presented. The problem is solved using a real genetic algorithm (RGA). For each topology proposed by RGA an indicator is employed to identify the weak buses for new reactive power sources allocation. The fitness function is calculated using the cost of each configuration as well as constraints deviation of an AC optimal power flow (OPF) in which the minimum reactive generation of new reactive sources and the active power losses are objectives. With allocation of reactive power sources at load buses, the circuit capacity increases and the cost of installation could be decreased. The method is tested in a well known test system, presenting good results when compared with other approaches. © 2011 IEEE.
Resumo:
This paper presents a power system capacity expansion planning modelconsidering carbon emissions constraints. In addition to the traditionaltechnical and economical issues usually considered in the planning process, two environmental policies that consist on the taxation and the annual limitsof carbon dioxide (CO 2) emissions are considered. Furthermore, the gradualretirement of old inefficient generation plants has been included. The approachguarantees a cleaner electricity production in the expanded power system ata relatively low cost. The proposed model considers the transmission systemand is applied to a 4-region and 11-region power systems over a 20-yearplanning horizon. Results show practical investment decisions in terms of sustainability and costs.
Resumo:
This paper proposes strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem (TEP). The concept of the binary numeral system (BNS) is used to reduce the number of binary and continuous variables related to the candidate transmission lines and network constraints that are connected with them. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) and additional constraints, obtained from power flow equilibrium in an electric power system are employed for more reduction in search space. The multistage TEP problem is modeled like a mixed binary linear programming problem and solved using a commercial solver with a low computational time. The results of one test system and two real systems are presented in order to show the efficiency of the proposed solution technique. © 1969-2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)