146 resultados para Transducer linearizer
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A circuit for transducer linearizer tasks have been designed and built using discrete components and it implements by: a Radial Basis Function Network (RBFN) with three basis functions. The application in a linearized thermistor showed that the network has good approximation capabilities. The circuit advantages is the amplitude, width and center.
Resumo:
Lignins extracted from sugar cane bagasse using different alcohols in the organosolv-CO(2) supercritical pulping process have been applied in the fabrication of ultrathin films through the Langmuir-Blodgett technique. Langmuir films were characterized by surface pressure versus mean molecular area (Pi-A) isotherms to exploit the sensitivity of nanostructured lignin films to metallic ions (Cu(2+), Cd(2+) and Pb(2+)). The Pi-A isotherms were shifted to larger molecular areas when heavy metal ions are present into the subphase, which might be related to electrostatic repulsions between metallic ions entrapped within the lignin molecular structure. Taking the advantage of metal incorporation, Langmuir monolayers were transferred onto solid substrates forming Langmuir-Blodgett (LB) films to be used as a transducer in an "electronic tongue" system to detect Cu(2+) in aqueous solution below threshold standard established by the Brazilian regulation. Both techniques impedance spectroscopy and electrochemistry have been used in these experiments. Complementary, Fourier transform infrared (FTIR) spectroscopy recorded for LB films before and after soaking into Cu(2+) aqueous solution revealed an interaction between the lignin phenyl groups and the metallic ion. (C) 2007 Elsevier B.V.. All rights reserved.
Resumo:
During pregnancy, the maternal endocrine pancreas undergoes, as a consequence of placental lactogens and prolactin (PR,L) action, functional changes that are characterized by increased glucose-induced insulin secretion. After delivery, the maternal endocrine pancreas rapidly returns to nonpregnant state, which is mainly attributed to the increased serum levels of glucocorticoids (GCs). Although GCs are known to decrease insulin secretion and counteract PRL action, the mechanisms for these effects are poorly understood. We have previously demonstrated that signal transducer and activator of transcription 3 (STAT3) is increased in islets treated with PRL. In the present study, we show that STAT3 expression and serine phosphorylation are increased in pancreatic islets at the end of pregnancy (P19). STAT3 serine phosphorylation rapidly returned to basal levels 3 days after delivery (U). The expression of the sarcoendoplasmic reticulum Ca2+-ATPase 2 (SERCA2), a crucial protein involved in the regulation of calcium handling in P-cells, was also increased in P19, returning to basal levels at L3. PRL increased SERCA2 and STAT3 expressions and STAT3 serine phosphorylation in RINm5F cells. The upregulation of SERCA2 by PRL was abolished after STAT3 knockdown. Moreover, PRL-induced STAT3 serine phosphorylation and SERCA2 expression were inhibited by dexamethasone (DEX). Insulin secretion from islets of PI 9 rats pre-incubated with thapsigargin and L3 rats showed a dramatic suppression of first phase of insulin release. The present results indicate that PRL regulates SERCA2 expression by a STAT3-dependent mechanism. PRL effect is counteracted by DEX and might contribute to the adaptation of maternal endocrine pancreas during the peripartum period.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes the development of a semiconductor strain gage tactile transducer. It was designed with the goal of measuring finger forces without affecting the hand dexterity. The transducer structure was manufactured with stainless steel and has small dimensions ( 4 min diameter and I min thickness). It is light and suitable to connect to the finger pads. It has a device that prevents its damage when forces are applied. The semiconductor strain gage was used over due its small size and high sensitivity, although it has high temperature sensitivity. Theory, design and construction details are presented the signal conditioning circuit is very simple because the semiconductor strain gage sensitivity is high. It presents linear response from 0 to 100 N, 0.5 N resolution, fall time of 7.2 ms, good repeatability, and small hysteresis. The semiconductor strain gage transducer has characteristics that can make it very useful in Rehabilitation Engineering, Robotics, and Medicine.
Resumo:
IEEE 1451 Standard is intended to address the smart transducer interfacing problematic in network environments. Usually, proprietary hardware and software is a very efficient solution to in planent the IEEE 1451 normative, although can be expensive and inflexible. In contrast, the use of open and standardized tools for implementing the IEEE 1451 normative is proposed in this paper. Tools such as Java and Phyton programming languages, Linux, programmable logic technology, Personal Computer resources and Ethernet architecture were integrated in order to constructa network node based on the IEEE 1451 standards. The node can be applied in systems based on the client-server communication model The evaluation of the employed tools and expermental results are presented. © 2005 IEEE.
Resumo:
A microcontrolled instrument for measuring the energy fluence rate (or intensity) of X-ray pulses in the orthovoltage range of 120 to 300 kV is described. The prototype instrument consists of a pyroelectric sensor, a low-noise highsensitivity current-to-voltage converter, a microcontroller and a digital display. The response of the instrument is nonlinear with the intensity of the radiation. The precision is better than 3%. The equipment is inexpensive, rugged, simple to construct and has good long-term stability. © 2009 Springer-Verlag.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
Resumo:
This work describes a hardware/software co-design system development, named IEEE 1451 platform, to be used in process automation. This platform intends to make easier the implementation of IEEE standards 1451.0, 1451.1, 1451.2 and 1451.5. The hardware was built using NIOS II processor resources on Alteras Cyclone II FPGA. The software was done using Java technology and C/C++ for the processors programming. This HW/SW system implements the IEEE 1451 based on a control module and supervisory software for industrial automation. © 2011 Elsevier B.V.
Resumo:
Ethanol with added water may be found during the process of assessing its physical and chemical properties. This addition can damage automotive vehicle engines and also may contribute to tax evasion. The present contribution describes a method based on a photothermal transparent transducer to determine the water content in ethanol. A chamber with a window of lithium tantalate coated with a thin layer of indium tin oxide was used, and a 1450-nm laser diode was employed as the excitation source. The results indicated a nearly linear response of the apparatus, as a function of the water content in water/ethanol solutions ranging from 0 to 100 (vol.%). The results for the dependency of the photothermal signal on the laser power and chopping frequency suggested that reliable results can be obtained using laser power and chopping rates above 100 mW and 10 Hz, respectively. The results reported here may be useful in the development of an alternative method that can provide real-time data on the water concentration in ethanol in a rapid, portable and unambiguous way, and that can be easily used in laboratory analyses or in gas stations. © 2013 Elsevier B.V.